Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pediatr Surg ; 59(5): 832-838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418278

RESUMO

BACKGROUND: Lung hypoplasia contributes to congenital diaphragmatic hernia (CDH) associated morbidity and mortality. Changes in lung wingless-type MMTV integration site family member (Wnt)-signalling and its downstream effector beta-catenin (CTNNB1), which acts as a transcription coactivator, exist in animal CDH models but are not well characterized in humans. We aim to identify changes to Wnt-signalling gene expression in human CDH lungs and hypothesize that pathway expression will be lower than controls. METHODS: We identified 51 CDH cases and 10 non-CDH controls with archival formalin-fixed paraffin-embedded (FFPE) autopsy lung tissue from 2012 to 2022. 11 liveborn CDH cases and an additional two anterior diaphragmatic hernias were excluded from the study, leaving 38 CDH cases. Messenger ribonucleic acid (mRNA) expression of Wnt-signalling effectors WNT2B and CTNNB1 was determined for 19 CDH cases and 9 controls. A subset of CDH cases and controls lung sections were immunostained for ß-catenin. Clinical variables were obtained from autopsy reports. RESULTS: Median gestational age was 21 weeks. 81% (n = 31) of hernias were left-sided. 47% (n = 18) were posterolateral. Liver position was up in 81% (n = 31) of cases. Defect size was Type C or D in 58% (n = 22) of cases based on autopsy photos, and indeterminable in 42% (n = 16) of cases. WNT2B and CTNNB1 mRNA expression did not differ between CDH and non-CDH lungs. CDH lungs had fewer interstitial cells expressing ß-catenin protein than non-CDH lungs (13.2% vs 42.4%; p = 0.006). CONCLUSION: There appear to be differences in the abundance and/or localization of ß-catenin proteins between CDH and non-CDH lungs. LEVEL OF EVIDENCE: Level III. TYPE OF STUDY: Case-Control Study.


Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Humanos , Lactente , beta Catenina/genética , beta Catenina/metabolismo , Estudos de Casos e Controles , Cateninas/metabolismo , Modelos Animais de Doenças , Hérnias Diafragmáticas Congênitas/patologia , Pulmão/anormalidades , Éteres Fenílicos/metabolismo , RNA Mensageiro/metabolismo
2.
BMC Cancer ; 19(1): 953, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615473

RESUMO

BACKGROUND: Gestational trophoblastic disease (GTD) is a heterogeneous group of diseases developed from trophoblasts. ASPP (Ankyrin-repeat, SH3-domain and proline-rich region containing protein) family proteins, ASPP1 and ASPP2, have been reported to be dysregulated in GTD. They modulate p53 activities and are responsible for multiple cellular processes. Nevertheless, the functional role of the ASPP family inhibitory member, iASPP, is not well characterized in GTD. METHODS: To study the functional role of iASPP in GTD, trophoblastic tissues from normal placentas, hydatidiform mole (HM) and choriocarcinoma were used for immunohistochemistry, whereas siRNAs were used to manipulate iASPP expression in choriocarcinoma cell lines and study the subsequent molecular changes. RESULTS: We demonstrated that iASPP was overexpressed in both HM and choriocarcinoma when compared to normal placenta. Progressive increase in iASPP expression from HM to choriocarcinoma suggests that iASPP may be related to the development of trophoblastic malignancy. High iASPP expression in HM was also significantly associated with a high expression of autophagy-related protein LC3. Interestingly, iASPP silencing retarded the growth of choriocarcinoma through senescence instead of induction of apoptosis. LC3 expression decreased once iASPP was knocked down, suggesting a downregulation on autophagy. This may be due to iASPP downregulation rendered decrease in Atg5 expression and concomitantly hindered autophagy in choriocarcinoma cells. Autophagy inhibition per se had no effect on the growth of choriocarcinoma cells but increased the susceptibility of choriocarcinoma cells to oxidative stress, implying a protective role of iASPP against oxidative stress through autophagy in choriocarcinoma. CONCLUSIONS: iASPP regulates growth and the cellular responses towards oxidative stress in choriocarcinoma cells. Its overexpression is advantageous to the pathogenesis of GTD. (266 words).


Assuntos
Autofagia , Coriocarcinoma/metabolismo , Mola Hidatiforme/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estresse Oxidativo , Proteínas Repressoras/metabolismo , Adolescente , Adulto , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Coriocarcinoma/patologia , Feminino , Seguimentos , Técnicas de Silenciamento de Genes , Humanos , Mola Hidatiforme/patologia , Peptídeos e Proteínas de Sinalização Intracelular/classificação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Placenta/citologia , Placenta/metabolismo , Gravidez , Proteínas Repressoras/classificação , Proteínas Repressoras/genética , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
3.
Am J Pathol ; 188(10): 2307-2317, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30031727

RESUMO

The placentas of Down syndrome (DS) pregnancies exhibit morphologic and functional abnormalities. Although the increase in dosage of certain genes on chromosome 21 has been associated with the DS phenotype, the effects on placenta have seldom been studied. Herein, we examine the expression of four dosage-sensitive genes (APP, ETS2, SOD1, and HMGN1) in normal and DS placentas. We demonstrated significant overexpression of amyloid precursor protein (APP) in DS placentas at RNA and protein levels by real-time quantitative PCR, Western blot analysis, and immunohistochemistry. Inducible APP overexpression trophoblast cell line models were established using a Tet-On system. APP induction in HTR-8/SVneo dose-dependently decelerated cell growth, enhanced apoptosis, and reduced cell migration and invasion when compared with the uninduced controls. Concomitantly, decreased ß-human chorionic gonadotropin in the culture medium was also detected on induction. Moreover, although forskolin treatment induced α/ß-human chorionic gonadotropin and syncytin expression in BeWo cells, such induction of syncytialization was inhibited by APP overexpression. E-cadherin immunofluorescence also demonstrated a decrease in syncytia formation in forskolin-treated BeWo-overexpressing APP. By liquid chromatography-tandem mass spectrometry, proteins related to cell-cell adhesion, protein translation, processing, and folding were found to be up-regulated in APP-induced HTR-8/SVneo clones. Our data demonstrated, for the first time, the effects of increased APP expression in DS placenta.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Síndrome de Down/fisiopatologia , Produtos do Gene env/fisiologia , Proteínas da Gravidez/fisiologia , Trofoblastos/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Colforsina/farmacologia , Feminino , Humanos , Placenta/metabolismo , Gravidez , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA