Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Heliyon ; 10(6): e28071, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524605

RESUMO

To explore the feature of cancer cells and tumor subclones, we analyzed 101,065 single-cell transcriptomes from 12 colorectal cancer (CRC) patients and 92 single cell genomes from one of these patients. We found cancer cells, endothelial cells and stromal cells in tumor tissue expressed much more genes and had stronger cell-cell interactions than their counterparts in normal tissue. We identified copy number variations (CNVs) in each cancer cell and found correlation between gene copy number and expression level in cancer cells at single cell resolution. Analysis of tumor subclones inferred by CNVs showed accumulation of mutations in each tumor subclone along lineage trajectories. We found differentially expressed genes (DEGs) between tumor subclones had two populations: DEGCNV and DEGreg. DEGCNV, showing high CNV-expression correlation and whose expression differences depend on the differences of CNV level, enriched in housekeeping genes and cell adhesion associated genes. DEGreg, showing low CNV-expression correlation and mainly in low CNV variation regions and regions without CNVs, enriched in cytokine signaling genes. Furthermore, cell-cell communication analyses showed that DEGCNV tends to involve in cell-cell contact while DEGreg tends to involve in secreted signaling, which further support that DEGCNV and DEGreg are two regulatorily and functionally distinct categories.

2.
Port J Card Thorac Vasc Surg ; 30(4): 75-79, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345877

RESUMO

INTRODUCTION: Popliteal artery aneurysms (PAA) can be very challenging, especially in cases of very large PAAs, with a minimal number of case reports published in the literature. METHODS: This is a case report of a 68-year-old male patient with hypertension, hyperlipidemia, diabetes, and schizophrenia who was found to have a giant (10x8x6cm) partially thrombosed PAA, treated with interposition polytetrafluoroethylene (PTFE) graft via a posterior approach. RESULTS: Under general anesthesia, the patient was placed in a prone position, and an extended lazy "S" incision was made on the popliteal fossa. After obtaining proximal and distal exposure, the aneurysm sac was skeletonized, preserving the popliteal vein and the tibial nerve. After proximal and distal control was obtained, the patient was systemically heparinized, and the aneurysm sac was opened. Some genicular branches were ligated inside the aneurysm, and part of the aneurysm sac was excised. A 7 mm PTFE graft was used for reconstruction in an end-to-end fashion. Suction drains were placed in the popliteal space, and the fascia and skin were approximated. The patient was discharged home on the 2nd postoperative day on aspirin and statin with ultrasound surveillance. The patient has remained asymptomatic during follow-up with a patent graft. CONCLUSIONS: Open surgical repair constitutes the gold standard of care for huge PAAs to prevent distal thromboembolic events and mass pressure effects from the aneurysm. Documentation of additional experience with open repair of huge PAAs would be beneficial and could help clinical decision-making.


Assuntos
Aneurisma , Aneurisma da Artéria Poplítea , Masculino , Humanos , Idoso , Aneurisma/diagnóstico , Joelho , Extremidade Inferior , Politetrafluoretileno , Artéria Poplítea/diagnóstico por imagem
3.
Commun Biol ; 6(1): 476, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127734

RESUMO

Mesenchymal stem/Stromal cells (MSCs) have great therapeutic potentials, and they have been isolated from various tissues and organs including definitive endoderm (DE) organs, such as the lung, liver and intestine. MSCs have been induced from human pluripotent stem cells (hPSCs) through multiple embryonic lineages, including the mesoderm, neural crest, and extraembryonic cells. However, it remains unclear whether hPSCs could give rise to MSCs in vitro through the endodermal lineage. Here, we report that hPSC-derived, SOX17+ definitive endoderm progenitors can further differentiate to cells expressing classic MSC markers, which we name definitive endoderm-derived MSCs (DE-MSCs). Single cell RNA sequencing demonstrates the stepwise emergence of DE-MSCs, while endoderm-specific gene expression can be elevated by signaling modulation. DE-MSCs display multipotency and immunomodulatory activity in vitro and possess therapeutic effects in a mouse ulcerative colitis model. This study reveals that, in addition to the other germ layers, the definitive endoderm can also contribute to MSCs and DE-MSCs could be a cell source for regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Fígado , Mesoderma
4.
J Biol Chem ; 298(11): 102525, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162509

RESUMO

RNA N6-methyladenosine (m6A) is the most abundant internal mRNA modification and forms part of an epitranscriptomic system that modulates RNA function. m6A is reversibly catalyzed by specific enzymes, and those modifications can be recognized by RNA-binding proteins that in turn regulate biological processes. Although there are many reports demonstrating m6A participation in critical biological functions, this exploration has mainly been conducted through the global KO or knockdown of the writers, erasers, or readers of m6A. Consequently, there is a lack of information about the role of m6A on single transcripts in biological processes, posing a challenge in understanding the biological functions of m6A. Here, we demonstrate a CRISPR/dCas13a-based RNA m6A editors, which can target RNAs using a single or multiple CRISPR RNA array to methylate or demethylate m6A in human 293T cells and mouse embryonic stem cells. We systematically assay its capabilities to enable the targeted rewriting of m6A dynamics, including modulation of circular RNA translation and transcript half-life. Finally, we use the system to specifically modulate m6A levels on the noncoding XIST (X-inactive specific transcript) to modulate X chromosome silencing and activation. The editors described here can be used to explore the roles of m6A in biological processes.


Assuntos
Adenosina , RNA Longo não Codificante , RNA , Animais , Humanos , Camundongos , Adenosina/metabolismo , Regulação da Expressão Gênica , RNA/genética , RNA/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Sistemas CRISPR-Cas , Células HEK293 , Células-Tronco Embrionárias Murinas , RNA Circular/genética
5.
EMBO Rep ; 23(8): e53468, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35785414

RESUMO

Androgen receptor (AR) is a master transcription factor that drives prostate cancer (PCa) development and progression. Alterations in the expression or activity of AR coregulators significantly impact the outcome of the disease. Using a proteomics approach, we identified the tripartite motif-containing 33 (TRIM33) as a novel transcriptional coactivator of AR. We demonstrate that TRIM33 facilitates AR chromatin binding to directly regulate a transcription program that promotes PCa progression. TRIM33 further stabilizes AR by protecting it from Skp2-mediated ubiquitination and proteasomal degradation. We also show that TRIM33 is essential for PCa tumor growth by avoiding cell-cycle arrest and apoptosis, and TRIM33 knockdown sensitizes PCa cells to AR antagonists. In clinical analyses, we find TRIM33 upregulated in multiple PCa patient cohorts. Finally, we uncover an AR-TRIM33-coactivated gene signature highly expressed in PCa tumors and predict disease recurrence. Overall, our results reveal that TRIM33 is an oncogenic AR coactivator in PCa and a potential therapeutic target for PCa treatment.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/uso terapêutico , Proteínas Quinases Associadas a Fase S/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Int J Biol Sci ; 18(11): 4316-4328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864973

RESUMO

Activator Protein 2 gamma (AP-2γ) is a master transcription factor that plays a critical role in the development and progression of breast cancer. However, the underlying mechanism is still unclear. Herein, using a proteomics approach, we identified Tripartite motif-containing 37 (TRIM37) as a novel coactivator of AP-2γ-mediated transcription in breast cancer cells. We demonstrate that TRIM37 facilitates AP-2γ chromatin binding to directly regulate the AP-2γ mediated transcriptional program. We also show that TRIM37 achieves this by stimulating K63 chain-linked ubiquitination of AP-2γ, promoting protein localization from the cytoplasm to the nucleus. In clinical analyses, we find TRIM37 is upregulated in multiple breast cancer datasets, supporting our findings that the TRIM37-AP-2γ interaction is essential for breast cancer tumor growth. Overall, our work reveals that TRIM37 is an oncogenic coactivator of AP-2γ in breast cancer and provides a novel therapeutic target for treating the disease.


Assuntos
Neoplasias da Mama , Fator de Transcrição AP-2 , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Fator de Transcrição AP-2/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
7.
ChemMedChem ; 17(3): e202100638, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783169

RESUMO

Earlier detection of biomarkers responsible for cancer relapse facilitates more rational cancer treatment regimens to be designed. Herein, we develop a mass cytometry-based strategy for unbiased mining of cell subsets that potentially contribute to cancer recurrence through panoramic examination of the immunophenotypic features and multidrug resistance characteristics. The incorporation of metal tags enables multiplexed information of single cells to be interrogated based on metal fingerprint. Using acute lymphoblastic leukemia (B-ALL) as a showcase, we show overexpressed multidrug resistance biomarkers, i. e., BCRP, Bcl-2, MRP1, and P-gp in B-ALL cells compared with healthy control, and a positive correlation among different multidrug resistance biomarkers. Different cell subsets with multidrug resistance are well-defined, featured with CD34+ CD38+ CD10- and CD34+ CD38+/int CD10+ . Importantly, we uncovered that CD34 expression level is positively correlated to multidrug resistance, indicative of a higher potential of immature cells to induce B-ALL relapse. In addition, the cell subsets positively expressing CD73 and CD304 (CD34+ CD10+ CD304+ ; CD34+ CD38+/int CD10+ CD73+ ) also overexpress multidrug resistance biomarkers, suggesting that they may serve as additional new biomarkers for B-ALL stratification and prognosis. Our data provide the first evidence that highly expressed multidrug resistance biomarkers in certain cell subpopulations with specific immunophenotypes may potentially induce B-ALL recurrence. The incorporation of multidrug resistance features with cell phenotypes using mass cytometry proposed in this study provides a general strategy for risk assessment and the prediction of recurrence of different types of cancers.


Assuntos
Biomarcadores Tumorais/genética , Resistência a Múltiplos Medicamentos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Análise de Célula Única , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Estrutura Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Relação Estrutura-Atividade
8.
Oncogene ; 40(50): 6759-6771, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663879

RESUMO

Human pancreatic ductal adenocarcinoma (PDAC) harboring one KRAS mutant allele often displays increasing genomic loss of the remaining wild-type (WT) allele (known as LOH at KRAS) as tumors progress to metastasis, yet the molecular ramification of this WT allelic loss is unknown. In this study, we showed that the restoration of WT KRAS expression in human PDAC cell lines with LOH at KRAS significantly attenuated the malignancy of PDAC cells both in vitro and in vivo, demonstrating a tumor-suppressive role of the WT KRAS allele. Through RNA-Seq, we identified the HIPPO signaling pathway to be positively regulated by WT KRAS in PDAC cells. In accordance with this observation, PDAC cells with LOH at KRAS exhibited increased nuclear localization and activation of transcriptional co-activator YAP1. Mechanistically, we discovered that WT KRAS expression sequestered YAP1 from the nucleus, through enhanced 14-3-3zeta interaction with phosphorylated YAP1 at S127. Consistently, expression of a constitutively-active YAP1 mutant in PDAC cells bypassed the growth inhibitory effects of WT KRAS. In patient samples, we found that the YAP1-activation genes were significantly upregulated in tumors with LOH at KRAS, and YAP1 nuclear localization predicted poor survival for PDAC patients. Collectively, our results reveal that the WT allelic loss leads to functional activation of YAP1 and enhanced tumor malignancy, which explains the selection advantage of the tumor cells with LOH at KRAS during pancreatic cancer clonal evolution and progression to metastasis, and should be taken into consideration in future therapeutic strategies targeting KRAS.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Perda de Heterozigosidade , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas de Sinalização YAP/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/fisiologia , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP/genética
9.
Oncogene ; 40(47): 6479-6493, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611310

RESUMO

Androgen receptor (AR) plays a central role in driving prostate cancer (PCa) progression. How AR promotes this process is still not completely clear. Herein, we used single-cell transcriptome analysis to reconstruct the transcriptional network of AR in PCa. Our work shows AR directly regulates a set of signature genes in the ER-to-Golgi protein vesicle-mediated transport pathway. The expression of these genes is required for maximum androgen-dependent ER-to-Golgi trafficking, cell growth, and survival. Our analyses also reveal the signature genes are associated with PCa progression and prognosis. Moreover, we find inhibition of the ER-to-Golgi transport process with a small molecule enhanced antiandrogen-mediated tumor suppression of hormone-sensitive and insensitive PCa. Finally, we demonstrate AR collaborates with CREB3L2 in mediating ER-to-Golgi trafficking in PCa. In summary, our findings uncover a critical role for dysregulation of ER-to-Golgi trafficking expression and function in PCa progression, provide detailed mechanistic insights for how AR tightly controls this process, and highlight the prospect of targeting the ER-to-Golgi pathway as a therapeutic strategy for advanced PCa.


Assuntos
Androgênios/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Complexo de Golgi/patologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Animais , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Redes Reguladoras de Genes , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Masculino , Camundongos , Prognóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Análise de Célula Única/métodos , Taxa de Sobrevida , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Mol Immunol ; 17(6): 631-646, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645649

RESUMO

We elucidated the anti-inflammatory mechanisms of IL-38 in allergic asthma. Human bronchial epithelial cells and eosinophils were cocultured upon stimulation with the viral RLR ligand poly (I:C)/LyoVec or infection-related cytokine TNF-α to induce expression of cytokines/chemokines/adhesion molecules. House dust mite (HDM)-induced allergic asthma and humanized allergic asthma NOD/SCID murine models were established to assess anti-inflammatory mechanisms in vivo. IL-38 significantly inhibited induced proinflammatory IL-6, IL-1ß, CCL5, and CXCL10 production, and antiviral interferon-ß and intercellular adhesion molecule-1 expression in the coculture system. Mass cytometry and RNA-sequencing analysis revealed that IL-38 could antagonize the activation of the intracellular STAT1, STAT3, p38 MAPK, ERK1/2, and NF-κB pathways, and upregulate the expression of the host defense-related gene POU2AF1 and anti-allergic response gene RGS13. Intraperitoneal injection of IL-38 into HDM-induced allergic asthma mice could ameliorate airway hyperreactivity by decreasing the accumulation of eosinophils in the lungs and inhibiting the expression of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluid (BALF) and lung homogenates. Histological examination indicated lung inflammation was alleviated by reductions in cell infiltration and goblet cell hyperplasia, together with reduced Th2, Th17, and innate lymphoid type 2 cell numbers but increased proportions of regulatory T cells in the lungs, spleen, and lymph nodes. IL-38 administration suppressed airway hyperreactivity and asthma-related IL-4 and IL-5 expression in humanized mice, together with significantly decreased CCR3+ eosinophil numbers in the BALF and lungs, and a reduced percentage of human CD4+CRTH2+ Th2 cells in the lungs and mediastinal lymph nodes. Together, our results demonstrated the anti-inflammatory mechanisms of IL-38 and provided a basis for the development of a regulatory cytokine-based treatment for allergic asthma.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Citocinas/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Interleucinas/uso terapêutico , Adulto , Animais , Anti-Inflamatórios/farmacologia , Asma/complicações , Asma/genética , Asma/imunologia , Brônquios/patologia , Células Cultivadas , Citocinas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipersensibilidade/complicações , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Interleucinas/farmacologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Poli I-C/farmacologia , Pyroglyphidae/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/farmacologia
12.
Genome Res ; 29(2): 223-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30606742

RESUMO

The aberrant activities of transcription factors such as the androgen receptor (AR) underpin prostate cancer development. While the AR cis-regulation has been extensively studied in prostate cancer, information pertaining to the spatial architecture of the AR transcriptional circuitry remains limited. In this paper, we propose a novel framework to profile long-range chromatin interactions associated with AR and its collaborative transcription factor, erythroblast transformation-specific related gene (ERG), using chromatin interaction analysis by paired-end tag (ChIA-PET). We identified ERG-associated long-range chromatin interactions as a cooperative component in the AR-associated chromatin interactome, acting in concert to achieve coordinated regulation of a subset of AR target genes. Through multifaceted functional data analysis, we found that AR-ERG interaction hub regions are characterized by distinct functional signatures, including bidirectional transcription and cotranscription factor binding. In addition, cancer-associated long noncoding RNAs were found to be connected near protein-coding genes through AR-ERG looping. Finally, we found strong enrichment of prostate cancer genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) at AR-ERG co-binding sites participating in chromatin interactions and gene regulation, suggesting GWAS target genes identified from chromatin looping data provide more biologically relevant findings than using the nearest gene approach. Taken together, our results revealed an AR-ERG-centric higher-order chromatin structure that drives coordinated gene expression in prostate cancer progression and the identification of potential target genes for therapeutic intervention.


Assuntos
Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Cromatina/química , Redes Reguladoras de Genes , Genoma Humano , Humanos , Masculino , Proteínas de Fusão Oncogênica/análise , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/metabolismo , RNA Longo não Codificante/metabolismo , Regulador Transcricional ERG/metabolismo , Regulador Transcricional ERG/fisiologia
13.
J Pharm Pharmacol ; 71(3): 306-315, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30362115

RESUMO

OBJECTIVES: Drug combination in cancer therapy aims to achieve synergistic therapeutic effect, reduced drug dosage, reduced drug toxicity and minimizes or delays the induction of drug resistance. In the present study, we investigated the anticancer effects of the combination of two metabolic modulators, dichloroacetate (DCA) and bacillus caldovelox arginase (BCA) (or pegyated human arginase (HA)). METHODS: The combination treatments were evaluated in MCF-7 and MDA-MB 231 cells as well as in MDA-MB 231 breast cancer xenograft model. KEY FINDINGS: Dichloroacetate and BCA combination exhibited anti-proliferative effects on MCF-7 cells, which were found to be synergistic. Analysis of the gene expression upon drug treatments revealed that the synergistic anti-proliferative effect on MCF-7 cells was possibly in part due to the activation of the p53 pathway. A similar synergistic anti-proliferative effect was observed in the combined use of DCA and HA on MCF-7 and MDA-MB231 cells, which was due to induction of cell cycle arrest at G2/M phase. Moreover, the combination enhanced anti-tumour activity in a MDA-MB 231 xenograft mouse model. CONCLUSIONS: Our results suggested that dichloroacetate and arginase combination exhibited enhanced anti-cancer effects in preclinical breast cancer models which may offer an additional treatment option for breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Arginase/farmacologia , Proliferação de Células/efeitos dos fármacos , Ácido Dicloroacético/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimioterapia Combinada/métodos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
14.
Cell Rep ; 25(8): 2285-2298.e4, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463022

RESUMO

Estrogen drives breast cancer (BCa) progression by directly activating estrogen receptor α (ERα). However, because of the stochastic nature of gene transcription, it is important to study the estrogen signaling pathway at the single-cell level to fully understand how ERα regulates transcription. Here, we performed single-cell transcriptome analysis on ERα-positive BCa cells following 17ß-estradiol stimulation and reconstructed the dynamic estrogen-responsive transcriptional network from discrete time points into a pseudotemporal continuum. Notably, differentially expressed genes show an estrogen-stimulated metabolic switch that favors biosynthesis but reduces estrogen degradation. Moreover, folate-mediated one-carbon metabolism is reprogrammed through the mitochondrial folate pathway and polyamine and purine synthesis are upregulated coordinately. Finally, we show AZIN1 and PPAT are direct ERα targets that are essential for BCa cell survival and growth. In summary, our study highlights the dynamic transcriptional heterogeneity in ERα-positive BCa cells upon estrogen stimulation and uncovers a mechanism of estrogen-mediated metabolic switch.


Assuntos
Neoplasias da Mama/genética , Carbono/metabolismo , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Poliaminas/metabolismo , Purinas/metabolismo , Transdução de Sinais , Análise de Célula Única , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estrogênios/biossíntese , Estrogênios/farmacologia , Feminino , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fatores de Tempo
15.
Int J Biol Sci ; 14(10): 1196-1210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123069

RESUMO

Human embryonic stem cell (hESC) derived mesenchymal stem cells (EMSC) are efficacious in treating a series of autoimmune, inflammatory, and degenerative diseases in animal models. However, all the EMSC derivation methods reported so far rely on two-dimensional (2D) culture systems, which are inefficient, costive and difficult for large-scale production. HESC, as an unlimited source, can be successively propagated in spheroids. Here, we demonstrate that hESC spheroids can directly differentiate into MSC spheroids (EMSCSp) within 20 days in one vessel without passaging and the system is scalable to any desired size. EMSCSp can further differentiate into osteocytes and chondrocytes in spheres or demineralized bone matrix. EMSCSp also retains immune-modulatory effects in vitro and therapeutic effects on two mouse models of colitis after dissociation. Compared to EMSC differentiated in monolayer, EMSCSp-derived cells have faster proliferation and higher yield and develop less apoptosis and slower senescence. Thus, the 3D differentiation system allows simple, cost-effective, and scalable production of high-quality EMSC and subsequently bone and cartilage tissues for therapeutic application.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Condrócitos/citologia , Colite/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esferoides Celulares/citologia
16.
Mol Cancer Res ; 16(12): 1865-1878, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30115758

RESUMO

The human genome is mostly transcribed, yielding a rich repository of noncoding transcripts that are involved in a myriad of biological processes including cancer. However, how many noncoding transcripts such as long noncoding RNAs (lncRNA) function in cancer is still unclear. This study identified a novel set of clinically relevant androgen-regulated lncRNAs in prostate cancer. Among this group, LINC00844 was demonstrated to be a direct androgen-regulated target that is actively transcribed in androgen receptor (AR)-dependent prostate cancer cells. The expression of LINC00844 is higher in normal prostate compared with malignant and metastatic prostate cancer clinical specimens, and patients with low expression had a poor prognosis and significantly increased biochemical recurrence, suggesting LINC00844 functions in suppressing tumor progression and metastasis. Indeed, in vitro loss-of-function studies revealed that LINC00844 prevents prostate cancer cell migration and invasion. Moreover, findings from gene expression profiling analysis indicated that LINC00844 functions in trans, affecting global androgen-regulated gene transcription. Mechanistic evidence reveals that LINC00844 is important in facilitating AR binding to the chromatin. Finally, LINC00844 mediates its phenotypic effects in part by activating the expression of NDRG1, a crucial cancer metastasis suppressor. Collectively, LINC00844 is a novel coregulator of AR that plays a central role in the androgen transcriptional network and the development and progression of prostate cancer. IMPLICATIONS: This study highlights the function of the lncRNA, LINC00844, in regulating global AR-regulated genes in prostate cancer by modulating AR binding to chromatin.


Assuntos
Cromatina/metabolismo , Regulação para Baixo , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Invasividade Neoplásica , Prognóstico , Neoplasias da Próstata/metabolismo , RNA Longo não Codificante/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais
17.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992322

RESUMO

The identification and functional characterization of novel biomarkers in cancer requires survival analysis and gene expression analysis of both patient samples and cell line models. To help facilitate this process, we have developed KM-Express. KM-Express holds an extensive manually curated transcriptomic profile of 45 different datasets for prostate and breast cancer with phenotype and pathoclinical information, spanning from clinical samples to cell lines. KM-Express also contains The Cancer Genome Atlas datasets for 30 other cancer types with matching cell line expression data for 23 of them. We present KM-Express as a hypothesis generation tool for researchers to identify potential new prognostic RNA biomarkers as well as targets for further downstream functional cell-based studies. Specifically, KM-Express allows users to compare the expression level of genes in different groups of patients based on molecular, genetic, clinical and pathological status. Moreover, KM-Express aids the design of biological experiments based on the expression profile of the genes in different cell lines. Thus, KM-Express provides a one-stop analysis from bench work to clinical prospects. We have used this tool to successfully evaluate the prognostic potential of previously published biomarkers for prostate cancer and breast cancer. We believe KM-Express will accelerate the translation of biomedical research from bench to bed.Database URL: http://ec2-52-201-246-161.compute-1.amazonaws.com/kmexpress/index.php.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Internet , Neoplasias da Próstata/genética , Software , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Análise de Sobrevida
18.
Biochem J ; 475(11): 1965-1977, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29760237

RESUMO

AP-2 gamma (AP-2γ) is a transcription factor that plays pivotal roles in breast cancer biology. To search for small molecule inhibitors of AP-2γ, we performed a high-throughput fluorescence anisotropy screen and identified a polyoxometalate compound with Wells-Dawson structure K6[P2Mo18O62] (Dawson-POM) that blocks the DNA-binding activity of AP-2γ. We showed that this blocking activity is due to the direct binding of Dawson-POM to AP-2γ. We also provided evidence to show that Dawson-POM decreases AP-2γ-dependent transcription similar to silencing the gene. Finally, we demonstrated that Dawson-POM contains anti-proliferative and pro-apoptotic effects in breast cancer cells. In summary, we identified the first small molecule inhibitor of AP-2γ and showed Dawson-POM-mediated inhibition of AP-2γ as a potential avenue for cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Fator de Transcrição AP-2/antagonistas & inibidores , Compostos de Tungstênio/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Cinética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Compostos de Tungstênio/química , Compostos de Tungstênio/metabolismo
19.
Int J Biol Sci ; 14(5): 485-496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29805300

RESUMO

Cell density has profound impacts on the cell culture practices of human pluripotent stem cells. The regulation of cell growth, cell death, pluripotency and differentiation converge at high density, but it is largely unknown how different regulatory mechanisms act at this stage. We use a chemically defined medium to systemically examine cellular activities and the impact of medium components in high-density culture. We show that medium acidosis is the main factor that alters cell cycle, gene expression and cellular metabolism at high cell density. The low medium pH leads to inhibition of glucose consumption, cell cycle arrest, and subsequent cell death. At high cell density, the suppression of medium acidosis with sodium bicarbonate (NaHCO3) significantly increases culture capacity for stem cell survival, derivation, maintenance and differentiation. Our study provides a simple and effective tool to improve stem cell maintenance and applications.


Assuntos
Acidose/metabolismo , Meios de Cultura/química , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Trifosfato de Adenosina/química , Técnicas de Cultura de Células , Ciclo Celular , Morte Celular , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Separação Celular , Sobrevivência Celular , Citometria de Fluxo , Coração/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio , Bicarbonato de Sódio/química
20.
Cancer Lett ; 423: 71-79, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29526803

RESUMO

PanINs and IPMNs are the two most common precursor lesions that can progress to invasive pancreatic ductal adenocarcinoma (PDA). DCLK1 has been identified as a biomarker of progenitor cells in PDA progressed from PanINs. To explore the potential role of DCLK1-expressing cells in the genesis of IPMNs, we compared the incidence of DCLK1-positive cells in pancreatic tissue samples from genetically-engineered mouse models (GEMMs) for IPMNs, PanINs, and acinar to ductal metaplasia by immunohistochemistry and immunofluorescence. Mouse lineage tracing experiments in the IPMN GEMM showed that DCLK1+ cells originated from a cell lineage distinct from PDX1+ progenitors. The DCLK1+ cells shared the features of tuft cells but were devoid of IPMN tumor biomarkers. The DCLK1+ cells were detected in the earliest proliferative acinar clusters prior to the formation of metaplastic ductal cells, and were enriched in the "IPMN niches". In summary, DCLK1 labels a unique pancreatic cellular lineage in the IPMN GEMM. The clustering of DCLK1+ cells is an early event in Kras-induced pancreatic tumorigenesis and may contribute to IPMN initiation.


Assuntos
Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transativadores/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem da Célula , Proliferação de Células , Quinases Semelhantes a Duplacortina , Feminino , Engenharia Genética , Proteínas de Homeodomínio/genética , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias Intraductais Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA