Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(5): 900-913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225393

RESUMO

Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.


Assuntos
Doença de Alzheimer , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Modelos Animais de Doenças , Canais de Potencial de Receptor Transitório , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Camundongos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
2.
Acta Pharmacol Sin ; 43(5): 1251-1263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417577

RESUMO

Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.


Assuntos
Prostaglandina D2 , Prostaglandinas , Apoptose , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Autophagy ; 18(3): 624-642, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34313551

RESUMO

ABBREVIATIONS: Aß: ß-amyloid; AD: Alzheimer disease; AIF1/IBA1: allograft inflammatory factor 1; ALP: autophagy-lysosomal pathway; APP: amyloid beta precursor protein; ATP6V1B1/V-ATPase V1b1: ATPase H+ transporting V1 subunit B1; AVs: autophagy vacuoles; BAF: bafilomycin A1; CFC: contextual/cued fear conditioning assay; CHX: Ca2+/H+ exchanger; CTF-ß: carboxy-terminal fragment derived from ß-secretase; CTSD: cathepsin D; fAD: familial Alzheimer disease; GFAP: glial fibrillary acidic protein; LAMP1: lysosomal associated membrane protein 1; LTP: long-term potentiation; MCOLN1/TRPML1: mucolipin 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPT: microtubule associated protein tau; MWM: Morris water maze; NFT: neurofibrillary tangles; PFC: prefrontal cortex; PSEN1: presenilin 1; SQSTM1/p62: sequestosome 1; TBS: theta burst stimulation; TEM: transmission electronic microscopy; TPCN2/TPC2: two pore segment channel 2; WT: wild-type; V-ATPase: vacuolar type H+-ATPase.


Assuntos
Doença de Alzheimer , ATPases Vacuolares Próton-Translocadoras , Adenosina Trifosfatases/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Autofagia/fisiologia , Humanos , Lisossomos/metabolismo , Transtornos da Memória/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098449

RESUMO

Abstract: TFEB (transcription factor EB), which is a master regulator of autophagy and lysosome biogenesis, is considered to be a new therapeutic target for Parkinson's disease (PD). However, only several small-molecule TFEB activators have been discovered and their neuroprotective effects in PD are unclear. In this study, a curcumin derivative, named E4, was identified as a potent TFEB activator. Compound E4 promoted the translocation of TFEB from cytoplasm into nucleus, accompanied by enhanced autophagy and lysosomal biogenesis. Moreover, TFEB knockdown effectively attenuated E4-induced autophagy and lysosomal biogenesis. Mechanistically, E4-induced TFEB activation is mainly through AKT-MTORC1 inhibition. In the PD cell models, E4 promoted the degradation of α-synuclein and protected against the cytotoxicity of MPP+ (1-methyl-4-phenylpyridinium ion) in neuronal cells. Overall, the TFEB activator E4 deserves further study in animal models of neurodegenerative diseases, including PD.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Curcumina/farmacologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/prevenção & controle , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células PC12 , Doença de Parkinson/genética , Doença de Parkinson/prevenção & controle , Interferência de RNA , Ratos , Transdução de Sinais/efeitos dos fármacos , alfa-Sinucleína/metabolismo
5.
Redox Biol ; 32: 101445, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32037305

RESUMO

TFEB (transcription factor EB) and TFE3 (transcription factor E3) are "master regulators" of autophagy and lysosomal biogenesis. The stress response p38 mitogen-activated protein (MAP) kinases affect multiple intracellular responses including inflammation, cell growth, differentiation, cell death, senescence, tumorigenesis, and autophagy. Small molecule p38 MAP kinase inhibitors such as SB202190 are widely used in dissection of related signal transduction mechanisms including redox biology and autophagy. Here, we initially aimed to investigate the links between p38 MAP kinase and TFEB/TFE3-mediated autophagy and lysosomal biogenesis. Unexpectedly, we found that only SB202190, rather than several other p38 inhibitors, promotes TFEB and TFE3 to translocate from the cytosol into the nucleus and subsequently enhances autophagy and lysosomal biogenesis. In addition, siRNA-mediated Tfeb and Tfe3 knockdown effectively attenuated SB202190-induced gene expression and lysosomal biogenesis. Mechanistical studies showed that TFEB and TFE3 activation in response to SB202190 is dependent on PPP3/calcineurin rather than on the inhibition of p38 or MTOR signaling, the main pathway for regulating TFEB and TFE3 activation. Importantly, SB202190 increased intracellular calcium levels, and calcium chelator BAPTAP-AM blocked SB202190-induced TFEB and TFE3 activation as well as autophagy and lysosomal biogenesis. Moreover, endoplasmic reticulum (ER) calcium is required for TFEB and TFE3 activation in response to SB202190. In summary, we identified a previously uncharacterized role of SB202190 in activating TFEB- and TFE3-dependent autophagy and lysosomal biogenesis via ER calcium release and subsequent calcium-dependent PPP3/calcineurin activation, leading to dephosphorylation of TFEB and TFE3. Given the importance of p38 MAP kinase invarious conditions including oxidative stress, the findings collectively indicate that SB202190 should not be used as a specific inhibitor for elucidating the p38 MAP kinase biological functions due to its potential effect on activating autophagy-lysosomal axis.


Assuntos
Lisossomos , Proteínas Quinases p38 Ativadas por Mitógeno , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Imidazóis , Piridinas , Proteínas Quinases p38 Ativadas por Mitógeno/genética
6.
Aging Cell ; 19(2): e13069, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31858697

RESUMO

Accumulating studies have suggested that targeting transcription factor EB (TFEB), an essential regulator of autophagy-lysosomal pathway (ALP), is promising for the treatment of neurodegenerative disorders, including Alzheimer's disease (AD). However, potent and specific small molecule TFEB activators are not available at present. Previously, we identified a novel TFEB activator named curcumin analog C1 which directly binds to and activates TFEB. In this study, we systematically investigated the efficacy of curcumin analog C1 in three AD animal models that represent beta-amyloid precursor protein (APP) pathology (5xFAD mice), tauopathy (P301S mice) and the APP/Tau combined pathology (3xTg-AD mice). We found that C1 efficiently activated TFEB, enhanced autophagy and lysosomal activity, and reduced APP, APP C-terminal fragments (CTF-ß/α), ß-amyloid peptides and Tau aggregates in these models accompanied by improved synaptic and cognitive function. Knockdown of TFEB and inhibition of lysosomal activity significantly inhibited the effects of C1 on APP and Tau degradation in vitro. In summary, curcumin analog C1 is a potent TFEB activator with promise for the prevention or treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Curcumina/uso terapêutico , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Pareamento Cromossômico/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Curcumina/farmacologia , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno
7.
Sci Signal ; 9(444): ra89, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27601731

RESUMO

Some forms of familial Alzheimer's disease (FAD) are caused by mutations in presenilins (PSs), catalytic components of a γ-secretase complex that cleaves target proteins, including amyloid precursor protein (APP). Calcium (Ca(2+)) dysregulation in cells with these FAD-causing PS mutants has been attributed to attenuated store-operated Ca(2+) entry [SOCE; also called capacitative Ca(2+) entry (CCE)]. CCE occurs when STIM1 detects decreases in Ca(2+) in the endoplasmic reticulum (ER) and activates ORAI channels to replenish Ca(2+) stores in the ER. We showed that CCE was attenuated by PS1-associated γ-secretase activity. Endogenous PS1 and STIM1 interacted in human neuroblastoma SH-SY5Y cells, patient fibroblasts, and mouse primary cortical neurons. Forms of PS1 with FAD-associated mutations enhanced γ-secretase cleavage of the STIM1 transmembrane domain at a sequence that was similar to the γ-secretase cleavage sequence of APP. Cultured hippocampal neurons expressing mutant PS1 had attenuated CCE that was associated with destabilized dendritic spines, which were rescued by either γ-secretase inhibition or overexpression of STIM1. Our results indicate that γ-secretase activity may physiologically regulate CCE by targeting STIM1 and that restoring STIM1 may be a therapeutic approach in AD.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Sinalização do Cálcio , Mutação , Proteínas de Neoplasias/metabolismo , Presenilina-1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/genética , Presenilina-1/genética , Ratos , Molécula 1 de Interação Estromal/genética
8.
Autophagy ; 12(8): 1340-54, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27245989

RESUMO

Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential cation channel subfamily M member 2)-mediated Ca(2+) influx in oxidative stress-mediated autophagy regulation. On the one hand, we demonstrated that oxidative stress triggered TRPM2-dependent Ca(2+) influx to inhibit the induction of early autophagy, which renders cells more susceptible to death. On the other hand, oxidative stress induced autophagy (and not cell death) in the absence of the TRPM2-mediated Ca(2+) influx. Moreover, in response to oxidative stress, TRPM2-mediated Ca(2+) influx activated CAMK2 (calcium/calmodulin dependent protein kinase II) at levels of both phosphorylation and oxidation, and the activated CAMK2 subsequently phosphorylated BECN1/Beclin 1 on Ser295. Ser295 phosphorylation of BECN1 in turn decreased the association between BECN1 and PIK3C3/VPS34, but induced binding between BECN1 and BCL2. Clinically, acetaminophen (APAP) overdose is the most common cause of acute liver failure worldwide. We demonstrated that APAP overdose also activated ROS-TRPM2-CAMK2-BECN1 signaling to suppress autophagy, thereby causing primary hepatocytes to be more vulnerable to death. Inhibiting the TRPM2-Ca(2+)-CAMK2 cascade significantly mitigated APAP-induced liver injury. In summary, our data clearly demonstrate that oxidative stress activates the TRPM2-Ca(2+)-CAMK2 cascade to phosphorylate BECN1 resulting in autophagy inhibition.


Assuntos
Proteína Beclina-1/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Estresse Oxidativo , Canais de Cátion TRPM/metabolismo , Acetaminofen/química , Animais , Autofagia , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Overdose de Drogas , Células HEK293 , Células HeLa , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Serina/química , Transdução de Sinais
9.
Sci Rep ; 6: 20282, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26838264

RESUMO

Lysosomal calcium (Ca(2+)) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca(2+) signalling, yet the lysosome is not amenable to traditional patch-clamp electrophysiology. Previous attempts to record TPC2 single-channel activity put TPC2 outside its native environment, which not reflect TPC2's true physiological properties. To test the feasibility of using nuclear membrane electrophysiology for TPC2 channel characterization, we constructed a stable human TPC2-expressing DT40TKO cell line that lacks endogenous InsP3R and RyR (DT40TKO-hTPC2). Immunostaining revealed hTPC2 expression on the ER and nuclear envelope. Intracellular dialysis of NAADP into Fura-2-loaded DT40TKO-hTPC2 cells elicited cytosolic Ca(2+) transients, suggesting that hTPC2 was functionally active. Using nuclear membrane electrophysiology, we detected a ~220 pS single-channel current activated by NAADP with K(+) as the permeant ion. The detected single-channel recordings displayed a linear current-voltage relationship, were sensitive to Ned-19 inhibition, were biphasically regulated by NAADP concentration, and regulated by PKA phosphorylation. In summary, we developed a cell model for the characterization of the TPC2 channel and the nuclear membrane patch-clamp technique provided an alternative approach to rigorously investigate the electrophysiological properties of TPC2 with minimal manipulation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Membrana Nuclear/fisiologia , Animais , Canais de Cálcio/genética , Sinalização do Cálcio/fisiologia , Linhagem Celular , Galinhas , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lisossomos/metabolismo , Modelos Biológicos , NADP/análogos & derivados , NADP/metabolismo , Técnicas de Patch-Clamp , Fosforilação
10.
Autophagy ; 10(11): 1895-905, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483964

RESUMO

Autophagy is a catabolic lysosomal degradation process essential for cellular homeostasis and cell survival. Dysfunctional autophagy has been associated with a wide range of human diseases, e.g., cancer and neurodegenerative diseases. A large number of small molecules that modulate autophagy have been widely used to dissect this process and some of them, e.g., chloroquine (CQ), might be ultimately applied to treat a variety of autophagy-associated human diseases. Here we found that vacuolin-1 potently and reversibly inhibited the fusion between autophagosomes and lysosomes in mammalian cells, thereby inducing the accumulation of autophagosomes. Interestingly, vacuolin-1 was less toxic but at least 10-fold more potent in inhibiting autophagy compared with CQ. Vacuolin-1 treatment also blocked the fusion between endosomes and lysosomes, resulting in a defect in general endosomal-lysosomal degradation. Treatment of cells with vacuolin-1 alkalinized lysosomal pH and decreased lysosomal Ca(2+) content. Besides marginally inhibiting vacuolar ATPase activity, vacuolin-1 treatment markedly activated RAB5A GTPase activity. Expression of a dominant negative mutant of RAB5A or RAB5A knockdown significantly inhibited vacuolin-1-induced autophagosome-lysosome fusion blockage, whereas expression of a constitutive active form of RAB5A suppressed autophagosome-lysosome fusion. These data suggest that vacuolin-1 activates RAB5A to block autophagosome-lysosome fusion. Vacuolin-1 and its analogs present a novel class of drug that can potently and reversibly modulate autophagy.


Assuntos
Autofagia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Lisossomos/metabolismo , Fagossomos/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Adenosina Trifosfatases/metabolismo , Cálcio/metabolismo , Proliferação de Células , Sobrevivência Celular , Cloroquina/química , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Hep G2 , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Lentivirus/genética , Metabolismo , Microscopia Eletrônica de Transmissão , Mutação
11.
J Drug Target ; 21(5): 474-86, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23480724

RESUMO

Chitosan oligosaccharide (oligoCS) is a low molecular weight chitosan and its potential for DNA delivery is described here. DNA-loaded oligoCS nanoparticles were prepared by ionic gelation using thiamine pyrophosphate (TPP) as cross-linker. The nanoparticles with oligoCS:DNA: TPP weight ratio of 50:1:25 were approximately 170 nm in diameter with a zeta potential of +40 mV, and were used in the permeability study. The cytotoxicity of oligoCS solutions and nanoparticles was evaluated by MTT assay. The concentrations that exhibited minimal cytotoxicity were employed to investigate their effect on trans-epithelial electrical resistance (TEER) and cellular uptake across the Calu-3 cell layer which was used as a nasal epithelial model. OligoCS nanoparticles were able to cause a significant and reversible decrease in TEER and promote efficient cellular uptake. In addition, the oligoCS nanoparticles were able to enhance paracellular permeability to a greater extent than oligoCS solutions at an equivalent concentration. However, the oligoCS nanoparticles were too large to cross the cell layers through the paracellular route. The transcellular pathway appeared to be the major mechanism of the transportation of oligoCS nanoparticles across the cell layers. OligoCS nanoparticles also allowed efficient DNA incorporation, thereby providing the possibility of controlled nucleic acids release and absorption across epithelial surface.


Assuntos
Quitosana/administração & dosagem , DNA/administração & dosagem , Nanopartículas/administração & dosagem , Oligossacarídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Quitosana/farmacocinética , DNA/química , DNA/farmacocinética , Peixes , Géis/administração & dosagem , Géis/química , Géis/farmacocinética , Técnicas de Transferência de Genes , Humanos , Masculino , Nanopartículas/química , Mucosa Nasal/citologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Oligossacarídeos/química , Oligossacarídeos/farmacocinética , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Soluções/química , Tiamina Pirofosfato/administração & dosagem , Tiamina Pirofosfato/química , Tiamina Pirofosfato/farmacocinética
12.
J Biol Chem ; 281(24): 16649-55, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16603547

RESUMO

In cells undergoing apoptosis, a 22-amino-acid presenilin-2-loop peptide (PS2-LP, amino acids 308-329 in presenilin-2) is generated through cleavage of the carboxyl-terminal fragment of presenilin-2 by caspase-3. The impact of PS2-LP on the progression of apoptosis, however, is not known. Here we show that PS2-LP is a potent inducer of the mitochondrial-dependent cell death pathway when transduced as a fusion protein with HIV-TAT. Biochemical and functional studies demonstrate that TAT-PS2-LP can interact with the inositol 1,4,5-trisphosphate receptor and activate Ca(2+) release from the endoplasmic reticulum. These results indicate that PS2-LP-mediated alteration of intracellular Ca(2+) homeostasis may be linked to the acceleration of apoptosis. Therefore, targeting the function of PS2-LP could provide a useful therapeutic tool for the treatment of cancer and degenerative diseases.


Assuntos
Apoptose , Cálcio/metabolismo , Proteínas de Membrana/química , Animais , Caspase 3 , Caspases/metabolismo , Linhagem Celular Tumoral , Homeostase , Insetos , Mitocôndrias/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Peptídeos/química , Presenilina-2 , Ratos
13.
J Gen Physiol ; 125(5): 443-54, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15851503

RESUMO

The epithelia lining the epididymides of many species consists of several cell types. We have provided evidence that the basal cells are essential to the integrated functions of the epithelium. Basal cells, but not principal cells, and other cells in the epididymis express TRPC3 and COX-1. We have isolated basal cells from intact rat epididymis using antibody-coated Dynabeads and subjected them to whole-cell patch-clamp measurement of nonselective cation channel activity, a feature of TRPC3 protein, and Fluo-3 fluorescence measurement of intracellular Ca2+ concentration. The results show that a nonselective cation current blockable by La3+ (0.1 mM), Gd3+ (0.1 mM), or SKF96365 (20 microM) could be activated by lysylbradykinin (200 nM). In cells loaded with Fluo-3, addition of lysylbradykinin (100 nM) caused a sustained increase of intracellular Ca2+. This effect was blocked by Gd3+ (0.1 mM) or SKF96365 (20 microM) and was not observed in Fluo-3-loaded principal cells. Stimulation of basal cell/principal cell cocultures with lysylbradykinin (200 nM) evoked in principal cells a current with CFTR-Cl- channel characteristics. Isolated principal cells in the absence of basal cells did not respond to lysylbradykinin but responded to PGE2 (100 nM) with activation of a CFTR-like current. Basal cells, but not principal cells, released prostaglandin E2 when stimulated with lysylbradykinin (100 nM). The release was blocked by SKF96365 (20 microM) and BAPTA-AM (0.05 or 0.1 mM). Confluent cell monolayers harvested from a mixture of disaggregated principal cells and basal cells responded to lysylbradykinin (100 nM) and PGE2 (500 nM) with an increase in electrogenic anion secretion. The former response was dependent on prostaglandin synthesis as piroxicam blocked the response. However, cell cultures obtained from principal cells alone responded to PGE2 but not to bradykinin. These results support the notion that basal cells regulate principal cells through a Ca2+ and COX signaling pathway.


Assuntos
Líquidos Corporais/fisiologia , Canais de Cálcio/fisiologia , Comunicação Celular/fisiologia , Epididimo/citologia , Epididimo/fisiologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Células Cultivadas , Cloretos/metabolismo , Técnicas de Cocultura , Ciclo-Oxigenase 1 , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Dinoprostona/metabolismo , Imidazóis/farmacologia , Canais Iônicos/genética , Canais Iônicos/fisiologia , Calidina/farmacologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Oligonucleotídeos Antissenso , Técnicas de Patch-Clamp , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Secretina/farmacologia , Canais de Cátion TRPC , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA