Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JMIR Med Inform ; 7(4): e14401, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31573929

RESUMO

BACKGROUND: Artificial intelligence (AI)-based therapeutics, devices, and systems are vital innovations in cancer control; particularly, they allow for diagnosis, screening, precise estimation of survival, informing therapy selection, and scaling up treatment services in a timely manner. OBJECTIVE: The aim of this study was to analyze the global trends, patterns, and development of interdisciplinary landscapes in AI and cancer research. METHODS: An exploratory factor analysis was conducted to identify research domains emerging from abstract contents. The Jaccard similarity index was utilized to identify the most frequently co-occurring terms. Latent Dirichlet Allocation was used for classifying papers into corresponding topics. RESULTS: From 1991 to 2018, the number of studies examining the application of AI in cancer care has grown to 3555 papers covering therapeutics, capacities, and factors associated with outcomes. Topics with the highest volume of publications include (1) machine learning, (2) comparative effectiveness evaluation of AI-assisted medical therapies, and (3) AI-based prediction. Noticeably, this classification has revealed topics examining the incremental effectiveness of AI applications, the quality of life, and functioning of patients receiving these innovations. The growing research productivity and expansion of multidisciplinary approaches are largely driven by machine learning, artificial neural networks, and AI in various clinical practices. CONCLUSIONS: The research landscapes show that the development of AI in cancer care is focused on not only improving prediction in cancer screening and AI-assisted therapeutics but also on improving other corresponding areas such as precision and personalized medicine and patient-reported outcomes.

2.
J Clin Med ; 8(3)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875745

RESUMO

The increasing application of Artificial Intelligence (AI) in health and medicine has attracted a great deal of research interest in recent decades. This study aims to provide a global and historical picture of research concerning AI in health and medicine. A total of 27,451 papers that were published between 1977 and 2018 (84.6% were dated 2008⁻2018) were retrieved from the Web of Science platform. The descriptive analysis examined the publication volume, and authors and countries collaboration. A global network of authors' keywords and content analysis of related scientific literature highlighted major techniques, including Robotic, Machine learning, Artificial neural network, Artificial intelligence, Natural language process, and their most frequent applications in Clinical Prediction and Treatment. The number of cancer-related publications was the highest, followed by Heart Diseases and Stroke, Vision impairment, Alzheimer's, and Depression. Moreover, the shortage in the research of AI application to some high burden diseases suggests future directions in AI research. This study offers a first and comprehensive picture of the global efforts directed towards this increasingly important and prolific field of research and suggests the development of global and national protocols and regulations on the justification and adaptation of medical AI products.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25571546

RESUMO

We research a mobile imaging system for early diagnosis of melanoma. Different from previous work, we focus on smartphone-captured images, and propose a detection system that runs entirely on the smartphone. Smartphone-captured images taken under loosely-controlled conditions introduce new challenges for melanoma detection, while processing performed on the smartphone is subject to computation and memory constraints. To address these challenges, we propose to localize the skin lesion by combining fast skin detection and fusion of two fast segmentation results. We propose new features to capture color variation and border irregularity which are useful for smartphone-captured images. We also propose a new feature selection criterion to select a small set of good features used in the final lightweight system. Our evaluation confirms the effectiveness of proposed algorithms and features. In addition, we present our system prototype which computes selected visual features from a user-captured skin lesion image, and analyzes them to estimate the likelihood of malignance, all on an off-the-shelf smartphone.


Assuntos
Detecção Precoce de Câncer , Interpretação de Imagem Assistida por Computador , Neoplasias Cutâneas/diagnóstico , Algoritmos , Telefone Celular , Diagnóstico por Imagem , Humanos , Melanoma/diagnóstico , Fotografação , Pele/patologia , Pigmentação da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA