Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920686

RESUMO

The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying cancer cells. Whether the DNA damage response to this type of damage is different from that elicited in response to low-LET radiation, and if and how it can be targeted to increase treatment efficacy, is not fully understood. Although several preclinical studies have reported radiosensitizing effects when proton or carbon ion irradiation is combined with inhibitors of, e.g., PARP, ATR, ATM, or DNA-PKcs, further exploration is required to determine the most effective treatments. Here, we examine what is known about repair pathway choice in response to high- versus low-LET irradiation, and we discuss the effects of inhibitors of these pathways when combined with protons and carbon ions. Additionally, we explore the potential effects of DNA repair inhibitors on antitumor immune signaling upon proton and carbon ion irradiation. Due to the reduced effect on healthy tissue and better immune preservation, particle therapy may be particularly well suited for combination with DNA repair inhibitors.


Assuntos
Dano ao DNA , Reparo do DNA , Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Animais , Transferência Linear de Energia
2.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674080

RESUMO

Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , NF-kappa B , Humanos , NF-kappa B/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Raios X , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Transferência Linear de Energia , Hipóxia Celular/efeitos da radiação , Carbono , Sobrevivência Celular/efeitos da radiação , Tolerância a Radiação , Interleucina-8/metabolismo , Interleucina-8/genética
3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256084

RESUMO

Hypoxia-induced radioresistance reduces the efficacy of radiotherapy for solid malignancies, including non-small cell lung cancer (NSCLC). Cellular hypoxia can confer radioresistance through cellular and tumor micro-environment adaptations. Until recently, studies evaluating radioresistance secondary to hypoxia were designed to maintain cellular hypoxia only before and during irradiation, while any handling of post-irradiated cells was carried out in standard oxic conditions due to the unavailability of hypoxia workstations. This limited the possibility of simulating in vivo or clinical conditions in vitro. The presence of molecular oxygen is more important for the radiotoxicity of low-linear energy transfer (LET) radiation (e.g., X-rays) than that of high-LET carbon (12C) ions. The mechanisms responsible for 12C ions' potential to overcome hypoxia-induced radioresistance are currently not fully understood. Therefore, the radioresistance of hypoxic A549 NSCLC cells following exposure to X-rays or 12C ions was investigated along with cell cycle progression and gene expression by maintaining hypoxia before, during and after irradiation. A549 cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h and then irradiated with X-rays (200 kV) or 12C ions (35 MeV/n, LET ~75 keV/µm). Cell survival was evaluated using colony-forming ability (CFA) assays immediately or 24 h after irradiation (late plating). DNA double-strand breaks (DSBs) were analyzed using γH2AX immunofluorescence microscopy. Cell cycle progression was determined by flow cytometry of 4',6-diamidino-2-phenylindole-stained cells. The global transcription profile post-irradiation was evaluated by RNA sequencing. When hypoxia was maintained before, during and after irradiation, hypoxia-induced radioresistance was observed only in late plating CFA experiments. The killing efficiency of 12C ions was much higher than that of X-rays. Cell survival under hypoxia was affected more strongly by the timepoint of plating in the case of X-rays compared to 12C ions. Cell cycle arrest following irradiation under hypoxia was less pronounced but more prolonged. DSB induction and resolution following irradiation were not significantly different under normoxia and hypoxia. Gene expression response to irradiation primarily comprised cell cycle regulation for both radiation qualities and oxygen conditions. Several PI3K target genes involved in cell migration and cell motility were differentially upregulated in hypoxic cells. Hypoxia-induced radioresistance may be linked to altered cell cycle response to irradiation and PI3K-mediated changes in cell motility and migration in A549 cells rather than less DNA damage or faster repair.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Células A549 , Neoplasias Pulmonares/radioterapia , Hipóxia , Tolerância a Radiação , Oxigênio , Íons , Fosfatidilinositol 3-Quinases , Microambiente Tumoral
4.
Sci Rep ; 13(1): 14878, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689817

RESUMO

New therapeutic approaches are needed for the management of the highly chemo- and radioresistant chondrosarcoma (CHS). In this work, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the intracellular delivery of the chemotherapeutic doxorubicin (IONPDOX) to augment the cytotoxic effects of carbon ions in comparison to photon radiation therapy. The in vitro biological effects were investigated in SW1353 chondrosarcoma cells focusing on the following parameters: cell survival using clonogenic test, detection of micronuclei (MN) by cytokinesis blocked micronucleus assay and morphology together with spectral fingerprints of nuclei using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module. The combination of IONPDOX with ion carbon or photon irradiation increased the lethal effects of irradiation alone in correlation with the induction of MN. Alterations in the hyperspectral images and spectral profiles of nuclei reflected the CHS cell biological modifications following the treatments, highlighting possible new spectroscopic markers of cancer therapy effects. These outcomes showed that the proposed combined treatment is promising in improving CHS radiotherapy.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Íons , Biomarcadores , Carbono , Condrossarcoma/radioterapia , Doxorrubicina
5.
Chembiochem ; 24(22): e202300543, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37712497

RESUMO

In biological tissues, ionizing radiation interacts with a variety of molecules and the consequences include cell killing and the modification of mechanical properties. Applications of biological radiation action are for instance radiotherapy, sterilization, or the tailoring of biomaterial properties. During the first femtoseconds to milliseconds after the initial radiation action, biomolecular systems typically respond by transfer of charge, atoms, or energy. In the condensed phase, it is usually very difficult to distinguish direct effects from indirect effects. A straightforward solution for this problem is the use of gas-phase techniques, for instance from the field of mass spectrometry. In this review, we survey mainly experimental but also theoretical work, focusing on radiation-induced intra- and inter-molecular transfer of charge, atoms, and energy within biomolecular systems in the gas phase. Building blocks of DNA, proteins, and saccharides, but also antibiotics are considered. The emergence of general processes as well as their timescales and mechanisms are highlighted.


Assuntos
Proteínas , Radiação Ionizante , Proteínas/química , Espectrometria de Massas
6.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176123

RESUMO

The Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy (photon and proton) in Pediatrics (HARMONIC) is a five-year project funded by the European Commission that aimed to improve the understanding of the long-term ionizing radiation (IR) risks for pediatric patients. In this paper, we provide a detailed overview of the rationale, design, and methods for the biological aspect of the project with objectives to provide a mechanistic understanding of the molecular pathways involved in the IR response and to identify potential predictive biomarkers of individual response involved in long-term health risks. Biological samples will be collected at three time points: before the first exposure, at the end of the exposure, and one year after the exposure. The average whole-body dose, the dose to the target organ, and the dose to some important out-of-field organs will be estimated. State-of-the-art analytical methods will be used to assess the levels of a set of known biomarkers and also explore high-resolution approaches of proteomics and miRNA transcriptomes to provide an integrated assessment. By using bioinformatics and systems biology, biological pathways and novel pathways involved in the response to IR exposure will be deciphered.


Assuntos
Cardiologia , Prótons , Criança , Humanos , Estudos Longitudinais , Doses de Radiação , Fótons/uso terapêutico
7.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37046623

RESUMO

Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible in some specific locations. Such resistances can be explained by the particular composition of the tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into cancer stem cells, which are described to be more resistant to conventional treatments. One of the main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic properties but also its greater biological effectiveness against tumor cells. In this review, we describe the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.

8.
Front Biosci (Landmark Ed) ; 27(9): 277, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36224025

RESUMO

BACKGROUND: Radiation-induced bystander effects are induced changes in cells that were not themselves directly irradiated but were in the vicinity of a radiation path. Such effects, which occur in the microenvironment of an irradiated tumor, remain poorly understood and depend on the cell type and irradiation quality. This study aimed to evaluate bystander effects in non-irradiated chondrocytes that received conditioned medium from irradiated chondrosarcoma cells. METHODS: SW1353 chondrosarcoma cells were irradiated with X-rays and carbon ions, each at 0.1 Gy and 2 Gy, and the conditioned media of the irradiated cells were transferred to T/C-28A2 chondrocytes and Human Umbilical Venous Endothelial Cells (HUVECs). The whole proteome of bystander chondrocytes was analyzed by label-free mass spectrometry, and a comparative study was performed by dose and irradiation quality. HUVECs were evaluated for inflammatory cytokine secretion. RESULTS: The bystander response of chondrocytes to X-ray irradiation primarily affected the protein translation pathway (DHX36, EIF3B, EIF3D, EIF3M, EIF5, RPL6, RPLP0, RPS24, SYNCRIP), IL-12 (AIP, BOLA2, MIF, GAS6, MIF, PDGFRB) and the oxidative stress pathway (MGST3, PRDX2, PXDN, SOD2, TXN, TXNL1). Following carbon-ion irradiation, the G1/S pathway (PCBP4, PSMD12, PSME, XIAP) and mitotic G2 DNA damage checkpoint pathway (MRE11, TAOK1, UIMC1) were engaged. Changes in the regulation of chromosome separation (BCL7C, BUB3, CENPF, DYNC1LI1, SMARCA4, SMC4) were associated with only low-dose X-ray and carbon-ion irradiation. Modification of the protein translation pathway represented at least 30% of bystander effects and could play a role, possibly along with stress granules, in reduction in cellular metabolism to protect proteins. Stress granules were significantly enriched according to an interaction map. CONCLUSIONS: All these accessions corresponded to a window of the proteins modulated in response to the bystander effect. Our chondrosarcoma model clarified the nature of the bystander response of chondrocytes and may suggest several interesting new mechanisms that are specific to particular irradiation doses and qualities.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Efeito Espectador/efeitos da radiação , Carbono , Condrócitos , Condrossarcoma/radioterapia , Meios de Cultivo Condicionados/farmacologia , Citocinas , Dineínas do Citoplasma , DNA Helicases , Fator de Iniciação 3 em Eucariotos , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-12/farmacologia , Íons/farmacologia , Espectrometria de Massas , Proteínas Nucleares , Proteoma , Receptor beta de Fator de Crescimento Derivado de Plaquetas/farmacologia , Fatores de Transcrição , Microambiente Tumoral , Raios X
9.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740495

RESUMO

Survival in unresectable locally advanced stage non-small cell lung cancer (NSCLC) patients remains poor despite chemoradiotherapy. Recently, adjuvant immunotherapy improved survival for these patients but we are still far from curing most of the patients with only a 57% survival remaining at 3 years. This poor survival is due to the resistance to chemoradiotherapy, local relapses, and distant relapses. Several biological mechanisms have been found to be involved in the chemoradioresistance such as cancer stem cells, cancer mutation status, or the immune system. New drugs to overcome this radioresistance in NSCLCs have been investigated such as radiosensitizer treatments or immunotherapies. Different modalities of radiotherapy have also been investigated to improve efficacity such as dose escalation or proton irradiations. In this review, we focused on biological mechanisms such as the cancer stem cells, the cancer mutations, the antitumor immune response in the first part, then we explored some strategies to overcome this radioresistance in stage III NSCLCs with new drugs or radiotherapy modalities.

10.
Lancet Oncol ; 22(12): e562-e574, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34856153

RESUMO

The management of patients with cancer and Li-Fraumeni or heritable TP53-related cancer syndromes is complex because of their increased risk of developing second malignant neoplasms after genotoxic stresses such as systemic treatments or radiotherapy (radiosusceptibility). Clinical decision making also integrates the risks of normal tissue toxicity and sequelae (radiosensitivity) and tumour response to radiotherapy (radioresistance and radiocurability). Radiotherapy should be avoided in patients with cancer and Li-Fraumeni or heritable TP53 cancer-related syndromes, but overall prognosis might be poor without radiotherapy: radioresistance in these patients seems similar to or worse than that of the general population. Radiosensitivity in germline TP53 variant carriers seems similar to that in the general population. The risk of second malignant neoplasms according to germline TP53 variant and the patient's overall oncological prognosis should be assessed during specialised multidisciplinary staff meetings. Radiotherapy should be avoided whenever other similarly curative treatment options are available. In other cases, it should be adapted to minimise the risk of second malignant neoplasms in patients who still require radiotherapy despite its genotoxicity, in view of its potential benefit. Adaptations might be achieved through the reduction of irradiated volumes using proton therapy, non-ionising diagnostic procedures, image guidance, and minimal stray radiation. Non-ionising imaging should become more systematic. Radiotherapy approaches that might result in a lower probability of misrepaired DNA damage (eg, particle therapy biology and tumour targeting) are an area of investigation.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni/radioterapia , Neoplasias Induzidas por Radiação/patologia , Síndromes Neoplásicas Hereditárias/radioterapia , Radioterapia/efeitos adversos , Proteína Supressora de Tumor p53/genética , Humanos , Síndrome de Li-Fraumeni/genética , Neoplasias Induzidas por Radiação/etiologia , Síndromes Neoplásicas Hereditárias/patologia , Prognóstico
11.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360718

RESUMO

Besides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells. The conditioned medium was directly analyzed by mass spectrometry in order to identify candidate bystander factors involved in the signal transmission. The proteomic analysis of the bystander chondrocytes highlighted 20 proteins spots that were significantly modified at low dose, implicating several cellular mechanisms, such as oxidative stress responses, cellular motility, and exosomes pathways. In addition, the secretomic analysis revealed that the abundance of 40 proteins in the conditioned medium of 0.1 Gy irradiated chondrosarcoma cells was significantly modified, as compared with the conditioned medium of non-irradiated cells. A large cluster of proteins involved in stress granules and several proteins involved in the cellular response to DNA damage stimuli were increased in the 0.1 Gy condition. Several of these candidates and cellular mechanisms were confirmed by functional analysis, such as 8-oxodG quantification, western blot, and wound-healing migration tests. Taken together, these results shed new lights on the complexity of the radiation-induced bystander effects and the large variety of the cellular and molecular mechanisms involved, including the identification of a new potential actor, namely the stress granules.


Assuntos
Neoplasias Ósseas/metabolismo , Efeito Espectador/efeitos da radiação , Condrócitos/metabolismo , Condrossarcoma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteômica , Raios X , Neoplasias Ósseas/radioterapia , Linhagem Celular Tumoral , Condrossarcoma/radioterapia , Humanos
12.
Radiother Oncol ; 150: 253-261, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32717360

RESUMO

BACKGROUND AND PURPOSE: High-grade chondrosarcomas are chemo- and radio-resistant cartilage-forming tumors of bone that often relapse and metastase. Thus, new therapeutic strategies are urgently needed. MATERIAL AND METHODS: Chondrosarcoma cells (CH-2879) were exposed to carbon-ion irradiation, combined with miR-34 mimic and/or rapamycin administration. The effects of treatment on cancer stem cells, stemness-associated phenotype, radioresistance and tumor-initiating properties were evaluated. RESULTS: We show that high-grade chondrosarcoma cells contain a population of radioresistant cancer stem cells that can be targeted by a combination of carbon-ion therapy, miR-34 mimic administration and/or rapamycin treatment that triggers FOXO3 and miR-34 over-expression. mTOR inhibition by rapamycin triggered FOXO3 and miR-34, leading to KLF4 repression. CONCLUSION: Our results show that particle therapy combined with molecular treatments effectively controls cancer stem cells and may overcome treatment resistance of high-grade chondrosarcoma.


Assuntos
Neoplasias Ósseas , Condrossarcoma , MicroRNAs , Neoplasias Ósseas/radioterapia , Carbono , Linhagem Celular Tumoral , Condrossarcoma/genética , Condrossarcoma/terapia , Terapia Combinada , Humanos , Íons , Fator 4 Semelhante a Kruppel , MicroRNAs/genética , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Serina-Treonina Quinases TOR
13.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150868

RESUMO

Radiotherapy is an essential component of cancer therapy and remains one of the most (cost-) effective treatment options available [...].


Assuntos
Neoplasias/radioterapia , Tolerância a Radiação , Radioterapia/normas , Humanos
14.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878191

RESUMO

The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.


Assuntos
Neoplasias/radioterapia , Radioterapia/métodos , Humanos , Hipóxia , Terapia com Prótons
15.
Technol Cancer Res Treat ; 18: 1533033819871309, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495269

RESUMO

Chondrosarcomas are malignant tumors of the cartilage that are chemoresistant and radioresistant to X-rays. This restricts the treatment options essential to surgery. In this study, we investigated the sensitivity of chondrosarcoma to X-rays and C-ions in vitro. The sensitivity of 4 chondrosarcoma cell lines (SW1353, CH2879, OUMS27, and L835) was determined by clonogenic survival assays and cell cycle progression. In addition, biomarkers of DNA damage responses were analyzed in the SW1353 cell line. Chondrosarcoma cells showed a heterogeneous sensitivity toward irradiation. Chondrosarcoma cell lines were more sensitive to C-ions exposure compared to X-rays. Using D10 values, the relative biological effectiveness of C-ions was higher (relative biological effectiveness = 5.5) with cells resistant to X-rays (CH2879) and lower (relative biological effectiveness = 3.7) with sensitive cells (L835). C-ions induced more G2 phase blockage and micronuclei in SW1353 cells as compared to X-rays with the same doses. Persistent unrepaired DNA damage was also higher following C-ions irradiation. These results indicate that chondrosarcoma cell lines displayed a heterogeneous response to conventional radiation treatment; however, treatment with C-ions irradiation was more efficient in killing chondrosarcoma cells, compared to X-rays.


Assuntos
Condrossarcoma/radioterapia , Transferência Linear de Energia , Radiografia , Raios X/efeitos adversos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Condrossarcoma/patologia , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Radiação Ionizante , Eficiência Biológica Relativa
16.
J Bone Oncol ; 17: 100246, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31312595

RESUMO

Chondrosarcoma is a malignant tumor that arises from cartilaginous tissue and is radioresistant and chemoresistant to conventional treatments. The preferred treatment consists of surgical resection, which might cause severe disabilities for the patient; in addition, this procedure might be impossible for inoperable locations, such as the skull base. Carbon ion irradiation (hadron therapy) has been proposed as an alternative treatment, primarily due to its greater biological effectiveness and improved ballistic properties compared with conventional radiotherapy with X-rays. The goal of this study was to characterize the genetic mutations of a grade III chondrosarcoma cell line (CH2879) and examine the cellular responses to conventional radiotherapy (X-rays) and hadron therapy (proton and carbon ions) in the presence of the PARP inhibitor Olaparib. To better understand PARP inhibition, we first analyzed the formation of poly-ADP ribose chains by western blot; we observed an increase in its signal after irradiation, which disappeared on addition of the PARP inhibitor. PARPi enhanced ratio of approximately 1.3, 1.8, and 1.5 following irradiation of cells with X-rays, protons, and C-ions, respectively, as detected by clonogenic assay. The decrease in cell survival was confirmed by proliferation assay. The radiosensitivity of CH2879 cells was associated with mutations in homologous recombination repair genes, such as RAD50, SMARCA2 and NBN. This study demonstrates the capacity of the PARP inhibitor Olaparib to radiosensitize mutated chondrosarcoma cells to conventional photon irradiation, proton and carbon ion irradiation.

17.
J Cell Commun Signal ; 13(3): 343-356, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30903603

RESUMO

While the dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at low and high linear energy transfer (LET), mechanisms and effectors of cell-to-cell communication stay unclear and highly dependent of cell type. In the present study, we investigated the capacity of chondrocytes in responding to bystander factors released by chondrosarcoma cells irradiated at different doses (0.05 to 8 Gy) with X-rays and C-ions. Following a medium transfer protocol, cell survival, proliferation and DNA damages were quantified in bystander chondrocytes. The bystander factors secreted by chondrosarcoma cells were characterized. A significant and major RIBE response was observed in chondrocyte cells (T/C-28a2) receiving conditioned medium from chondrosarcoma cells (SW1353) irradiated with 0.1 Gy of X-rays and 0.05 Gy of C-ions, resulting in cell survivals of 36% and 62%, respectively. Micronuclei induction in bystander cells was observed from the same low doses. The cell survival results obtained by clonogenic assays were confirmed using impedancemetry. The bystander activity was vanished after a heat treatment or a dilution of the conditioned media. The cytokines which are well known as bystander factors, TNF-α and IL-6, were increased as a function of doses and LET according to an ELISA multiplex analysis. Together, the results demonstrate that irradiated chondrosarcoma cells can communicate stress factors to non-irradiated chondrocytes, inducing a wide and specific bystander response related to both doses and LET.

18.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487462

RESUMO

Immunotherapy has revolutionized the practice of oncology, improving survival in certain groups of patients with cancer. Immunotherapy can synergize with radiation therapy, increase locoregional control, and have abscopal effects. Combining it with other treatments, such as targeted therapies, is a promising means of improving the efficacy of immunotherapy. Because the value of immunotherapy is amplified with the expression of tumor antigens, coupling poly(ADP-ribose) polymerase (PARP) inhibitors and immunotherapy might be a promising treatment for cancer. Further, PARP inhibitors (PARPis) are being combined with radiation therapy to inhibit DNA repair functions, thus enhancing the effects of radiation; this association might interact with the antitumor immune response. Cytotoxic T lymphocytes are central to the antitumor immune response. PARP inhibitors and ionizing radiation can enhance the infiltration of cytotoxic T lymphocytes into the tumor bed, but they can also enhance PD-1/PDL-1 expression. Thus, the addition of immune checkpoint inhibitors with PARP inhibitors and/or ionizing radiation could counterbalance such immunosuppressive effects. With the present review article, we proposed to evaluate some of these associated therapies, and we explored the biological mechanisms and medical benefits of the potential combination of radiation therapy, immunotherapy, and PARP inhibitors.


Assuntos
Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Terapia Combinada , Reparo do DNA/efeitos dos fármacos , Humanos
19.
Sci Rep ; 8(1): 3664, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483558

RESUMO

Despite continuous improvements in treatment of glioblastoma, tumor recurrence and therapy resistance still occur in a high proportion of patients. One underlying reason for this radioresistance might be the presence of glioblastoma cancer stem cells (GSCs), which feature high DNA repair capability. PARP protein plays an important cellular role by detecting the presence of damaged DNA and then activating signaling pathways that promote appropriate cellular responses. Thus, PARP inhibitors (PARPi) have recently emerged as potential radiosensitizing agents. In this study, we investigated the preclinical efficacy of talazoparib, a new PARPi, in association with low and high linear energy transfer (LET) irradiation in two GSC cell lines. Reduction of GSC fraction, impact on cell proliferation, and cell cycle arrest were evaluated for each condition. All combinations were compared with a reference schedule: photonic irradiation combined with temozolomide. The use of PARPi combined with photon beam and even more carbon beam irradiation drastically reduced the GSC frequency of GBM cell lines in vitro. Furthermore, talazoparib combined with irradiation induced a marked and prolonged G2/M block, and decreased proliferation. These results show that talazoparib is a new candidate that effects radiosensitization in radioresistant GSCs, and its combination with high LET irradiation, is promising.


Assuntos
Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Transferência Linear de Energia/efeitos dos fármacos , Transferência Linear de Energia/fisiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Radiossensibilizantes , Transdução de Sinais/efeitos dos fármacos
20.
Oncotarget ; 8(40): 69105-69124, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978184

RESUMO

BACKGROUND: Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors are becoming important actors of anti-neoplasic agents landscape, with recent but narrow FDA's approvals for ovarian BRCA mutated cancers and prostatic cancer. Nevertheless, PARP inhibitors are also promising drugs for combined treatments particularly with radiotherapy. More than seven PARP inhibitors have been currently developed. Central Role of PARP in DNA repair, makes consider PARP inhibitor as potential radiosensitizers, especially for tumors with DNA repair defects, such as BRCA mutation, because of synthetic lethality. Furthermore the replication-dependent activity of PARP inhibitor helps to maintain the differential effect between tumoral and healthy tissues. Inhibition of chromatin remodeling, G2/M arrest, vasodilatory effect induced by PARP inhibitor, also participate to their radio-sensitization effect. MATERIALS AND METHODS: Here, after highlighting mechanisms of PARP inhibitors radiosensitization we methodically searched PubMed, Google Scholar, Cochrane Databases and meeting proceedings for human pre-clinical and clinical studies that evaluated PARP inhibitor radiosensitizing effect. Enhancement ratio, when available, was systematically reported. RESULTS: Sixty four studies finally met our selection criteria and were included in the analysis. Only three pre-clinical studies didn't find any radiosensitizing effect. Median enhancement ratio vary from 1,3 for prostate tumors to 1,5 for lung cancers. Nine phase I or II trials assessed safety data. CONCLUSION: PARP inhibitors are promising radiosensitizers, but need more clinical investigation. The next ten years will be determining for judging their real potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA