Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(1): 52-70.e8, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181751

RESUMO

Human pluripotent stem cell-derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single-cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA-approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.


Assuntos
Cílios , Doenças Renais Policísticas , Humanos , Rim , Doenças Renais Policísticas/tratamento farmacológico , Autofagia , Organoides
2.
Proc Natl Acad Sci U S A ; 119(11): e2113074119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254894

RESUMO

SignificanceWith obesity on the rise, there is a growing appreciation for intracellular lipid droplet (LD) regulation. Here, we show how saturated fatty acids (SFAs) reduce fat storage-inducing transmembrane protein 2 (FIT2)-facilitated, pancreatic ß cell LD biogenesis, which in turn induces ß cell dysfunction and death, leading to diabetes. This mechanism involves direct acylation of FIT2 cysteine residues, which then marks the FIT2 protein for endoplasmic reticulum (ER)-associated degradation. Loss of ß cell FIT2 and LDs reduces insulin secretion, increases intracellular ceramides, stimulates ER stress, and exacerbates diet-induced diabetes in mice. While palmitate and stearate degrade FIT2, unsaturated fatty acids such as palmitoleate and oleate do not, results of which extend to nutrition and diabetes.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Glucose/metabolismo , Intolerância à Glucose , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Palmitatos/metabolismo , Estearatos/metabolismo
3.
JAMA Neurol ; 77(6): 746-754, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32310270

RESUMO

Importance: Large-scale genome-wide association studies in the European population have identified 90 risk variants associated with Parkinson disease (PD); however, there are limited studies in the largest population worldwide (ie, Asian). Objectives: To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts. Design Setting, and Participants: Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria. Main Outcomes and Measures: Genotypes of common variants, association with disease status, and polygenic risk scores. Results: Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10-10 in meta-analysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I2=67.1%; P = 3.40 × 10-3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6.81 × 10-12). Conclusions and Relevance: This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.


Assuntos
Predisposição Genética para Doença/genética , Glicoproteínas de Membrana/genética , N-Acetilgalactosaminiltransferases/genética , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Idoso , Povo Asiático/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , População Branca/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
4.
Cell Stem Cell ; 25(3): 373-387.e9, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31303547

RESUMO

Human pluripotent stem cell-derived kidney organoids recapitulate developmental processes and tissue architecture, but intrinsic limitations, such as lack of vasculature and functionality, have greatly hampered their application. Here we establish a versatile protocol for generating vascularized three-dimensional (3D) kidney organoids. We employ dynamic modulation of WNT signaling to control the relative proportion of proximal versus distal nephron segments, producing a correlative level of vascular endothelial growth factor A (VEGFA) to define a resident vascular network. Single-cell RNA sequencing identifies a subset of nephron progenitor cells as a potential source of renal vasculature. These kidney organoids undergo further structural and functional maturation upon implantation. Using this kidney organoid platform, we establish an in vitro model of autosomal recessive polycystic kidney disease (ARPKD), the cystic phenotype of which can be effectively prevented by gene correction or drug treatment. Our studies provide new avenues for studying human kidney development, modeling disease pathogenesis, and performing patient-specific drug validation.


Assuntos
Rim/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Rim Policístico Autossômico Recessivo/patologia , Diferenciação Celular , Células Cultivadas , Descoberta de Drogas , Terapia Genética , Humanos , Rim/irrigação sanguínea , Neovascularização Fisiológica , Técnicas de Cultura de Órgãos , Organogênese , Organoides/irrigação sanguínea , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/terapia , Medicina de Precisão , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA