Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047794

RESUMO

1-Isothiocyanato-6-(methylsulfinyl)-hexanate (6-MITC) is a natural compound found in Wasabia japonica. The synthetic derivatives 1-Isothiocyanato-6-(methylsulfenyl)-hexane (I7447) and 1-Isothiocyanato-6-(methylsulfonyl)-hexane (I7557) were obtained from 6-MITC by deleting and adding an oxygen atom to the sulfone group, respectively. We previously demonstrated that extensive mitotic arrest, spindle multipolarity, and cytoplasmic vacuole accumulation were induced by 6-MITC and inhibited the viability of human chronic myelogenous leukemia K562 cells. In this study, we examined the anti-cancer effects of 6-MITC derivatives on human chronic myelogenous leukemia (CML) cells. Autophagy was identified as the formation of autophagosomes with double-layered membranes using transmission electron microscopy. Cell cycle and differentiation were analyzed using flow cytometry. Apoptosis was detected by annexin V staining. After treatment with I7447 and I7557, the G2/M phase of cell cycle arrest was revealed. Cell death can be induced by a distinct mechanism (the simultaneous occurrence of autophagy and aberrant mitosis). The expression levels of acridine orange were significantly affected by lysosomal inhibitors. The natural wasabi component, 6-MITC, and its synthetic derivatives have similar effects on human chronic myelogenous leukemia cells and may be developed as novel therapeutic agents against leukemia.


Assuntos
Hexanos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Oxigênio , Isotiocianatos/farmacologia , Células K562 , Apoptose , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico
3.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230769

RESUMO

Immunotherapy modulating the tumor microenvironment (TME) immune function has a promising effect on various types of cancers, but it remains as a limited efficacy in colon cancer. Midostaurin (PKC412) has been used in the clinical treatment of fms-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia and has demonstrated immunomodulatory activity. We aimed to evaluate the effect of midostaurin on the modulation of TME and the efficacy of anti-programmed cell death protein 1 (PD-1) against colon cancer. Midostaurin inhibited the growth of murine CT26 and human HCT116 and SW480 cells with multinucleation and micronuclei formation in morphology examination. The cell cycle arrested in the G2/M phase and the formation of the polyploid phase was noted. The formation of cytosolic DNA, including double-strand and single-strand DNA, was increased. Midostaurin increased mRNA expressions of cGAS, IRF3, and IFNAR1 in colorectal adenocarcinoma cells and mouse spleen macrophages. The protein expressions of Trex-1, c-KIT, and Flt3, but not PKCα/ß/γ and VEGFR1, were down-regulated in midostaurin-treated colorectal adenocarcinoma cells and macrophages. Trex-1 protein expression was abrogated after FLT3L activation. In vivo, the combination of midostaurin and anti-PD-1 exhibited the greatest growth inhibition on a CT26-implanted tumor without major toxicity. TME analysis demonstrated that midostaurin alone decreased Treg cells and increased neutrophils and inflammatory monocytes. NKG2D+ and PD-1 were suppressed and M1 macrophage was increased after combination therapy. When combined with anti-PD-1, STING and INFß protein expression was elevated in the tumor. The oral administration of midostaurin may have the potential to enhance anti-PD-1 efficacy, accompanied by the modulation of cytosolic DNA-sensing signaling and tumor microenvironment.

4.
Biomater Adv ; 140: 213045, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35939956

RESUMO

Vital pulp therapy (VPT) has gained significant consideration by utilizing the natural healing capacity of the inflamed pulp in healing process. However, the protective pulp capping materials that facilitate this healing process are still under investigation for the successful promotion of dentin-pulp regeneration. Herein, we developed a bioactive and biodegradable pulp capping material (denoted as sCSHA-GFs) by synthesizing inorganic submicron calcium sulfate hemihydrate (sCS)/porous hydroxyapatite (HA) loaded with growth factors (GFs) such as transforming growth factor-beta 1 (TGF-ß1), fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Physiochemical characteristics of submicron CSHA-GFs (sCSHA-GFs) cement were determined. Human dental pulp stem cells (hDPSCs) were used for analyzing their biocompatibility and bioactivity for dentin mineralization. To evaluate the efficacy of sCSHA-GFs, we compared it with a commercial material, mineral trioxide aggregate (MTA), the reference standard used clinically on pulp capping. Our results showed that sCSHA-GFs cement presented good biodegradability with dissolution properties for sustained release of calcium (Ca2+) ions and GFs, and facilitated attachment, proliferation, differentiation and migration of hDPSCs. In addition, sCSHA-GFs cement was found to be more effective than MTA at prolonged incubation time in inducing the mRNA expression levels of odontoblastic differentiation markers, dentin sialophosphoprotein (DSPP) and dentin matrix protein (DMP-1), leading to increased mineralization (with calcium deposits) along with increased alkaline phosphatase (ALP) expressions, evident from Alizarin Red S and ALP staining assays. Our findings suggest that sCSHA-GFs cement may act as a suitable material in VPT for dentin-pulp regeneration.


Assuntos
Sulfato de Cálcio , Polpa Dentária , Humanos , Sulfato de Cálcio/farmacologia , Dentina , Durapatita/farmacologia , Porosidade , Regeneração , Fator A de Crescimento do Endotélio Vascular
5.
J Clin Med ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268304

RESUMO

BACKGROUND: Incidental radiotherapy (RT) to the adrenal gland may have systemic effects. This study aimed to investigate the effects of adrenal RT on fatigue. METHODS: BALB/c mice were surgically explored to identify the left adrenal gland and delivered intra-operative RT. The swimming endurance test was used for endurance assessment to represent fatigue. Plasma levels of stress hormones and histopathological features were examined. Three patients with inevitable RT to the adrenal gland were enrolled for the preliminary study. Serum levels of cortisol, aldosterone, and adrenocorticotropic hormone (ACTH) were measured before and after RT. Fatigue score by using the fatigue severity scale and RT dosimetric parameters were collected. RESULTS: In the experimental mouse model, adrenal RT decreased baseline cortisol from 274.6 ± 37.8 to 193.6 ± 29.4 ng/mL (p = 0.007) and swimming endurance time from 3.7 ± 0.3 to 1.7 ± 0.6 min (p = 0.02). In histopathological assessment, the irradiated adrenal glands showed RT injury features in the adrenal cortex. In the enrolled patients, baseline cortisol significantly declined after RT. There were no significant differences in the levels of morning cortisol, aldosterone, and ACTH before and after RT. CONCLUSIONS: The RT dose distributed to the adrenal gland may correlate with unwanted adverse effects, including fatigue and adrenal hormone alterations.

6.
Integr Cancer Ther ; 21: 15347354221077682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168384

RESUMO

The efficacy of chemotherapeutic drugs for the treatment of brain metastasis may be compromised by the blood-brain barrier (BBB) and blood-tumor barrier (BTB). P-glycoprotein (P-gp) is a multidrug resistance protein that potentially limits the penetration of chemotherapeutics through the BBB and BTB. 5-Fluorouracil (5-FU) is widely used to treat cancer. Bioactive constituents of medicinal herbs, such as borneol and tetrandrine, potentially improve drug penetration through the BBB and BTB. We hypothesized that borneol and tetrandrine might modulate the BBB and BTB to enhance 5-FU penetration into the brain. To investigate this, in vitro and in vivo models were developed to explore the modulatory effects of borneol and tetrandrine on 5-FU penetration through the BBB and BTB. In the in vitro models, barrier integrity, cell viability, barrier penetration, P-gp activity, and NF-κB expression were assessed. In the in vivo brain metastasis models, cancer cells were injected into the internal carotid artery to evaluate tumor growth. The experimental results demonstrated that borneol and borneol + tetrandrine reduced BBB integrity. The efflux pump function of P-gp was partially inhibited by tetrandrine and borneol + tetrandrine. In the in vivo experiment, borneol + tetrandrine effectively prolonged survival without compromising body weight. In conclusion, BBB and BTB integrity was modulated by borneol and borneol + tetrandrine. The combination of borneol and tetrandrine could be used to improve the chemotherapeutic control of brain metastasis.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Benzilisoquinolinas , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Canfanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos
7.
Front Oncol ; 11: 729418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513706

RESUMO

Esophageal cancer is a common malignancy worldwide and a leading cause of cancer-related mortality. Definitive concurrent chemoradiotherapy (CCRT) has been widely used to treat locally advanced esophageal squamous cell carcinoma (ESCC). In this study, we evaluated the predictive power of a 35-gene mutation profile and radiation parameters in patients with ESCC. Data from 44 patients with ESCC who underwent definitive CCRT were retrospectively reviewed. A 35-gene mutation profile, derived from reported ESCC-specific next-generation sequencing results, and radiation dosimetry parameters were examined using the Kaplan-Meier curve and Cox proportional hazards model. All patients were native Chinese and underwent CCRT with a median follow-up time of 22.0 months. Significant prognostic factors affecting progression-free survival in the multivariable Cox regression model were clinical nodal staging ≥2 (hazard ratio, HR: 2.52, 95% CI: 1.15-5.54, p = 0.022), ≥10% lung volume receiving ≥30 Gy (V30) (HR: 2.36, 95% CI: 1.08-5.17, p = 0.032), and mutation of fibrous sheath interacting protein 2 (FSIP2) (HR: 0.08, 95% CI: 0.01-0.58, p = 0.013). For overall survival, significant prognostic factors in the multivariable Cox regression model were lung V30 ≥10% (HR: 3.71, 95% CI: 1.48-9.35, p = 0.005) and mutation of spectrin repeat containing nuclear envelope protein 1 (SYNE1) (HR: 2.95, 95% CI: 1.25-6.97, p = 0.014). Our cohort showed higher MUC17 (79.5% vs. 5.7%), FSIP2 (18.2% vs. 6.2%), and SYNE1 (38.6% vs. 11.0%) mutation rates and lower TP53 (38.6% vs. 68.7%) mutation rates than the ESCC cohorts from The Cancer Genome Atlas. In conclusion, by using a combination of a 35-gene mutation profile and radiotherapy dosimetry, mutations in FSIP2 and SYNE1 as well as lung V30 were identified as potential predictors for developing a prediction model for clinical outcomes in patients with ESCC administered definitive CCRT.

8.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805784

RESUMO

Hepatocellular carcinoma (HCC) frequently shows early invasion into blood vessels as well as intrahepatic metastasis. Innovations of novel small-molecule agents to block HCC invasion and subsequent metastasis are urgently needed. Moscatilin is a bibenzyl derivative extracted from the stems of a traditional Chinese medicine, orchid Dendrobium loddigesii. Although moscatilin has been reported to suppress tumor angiogenesis and growth, the anti-metastatic property of moscatilin has not been elucidated. The present results revealed that moscatilin inhibited metastatic behavior of HCC cells without cytotoxic fashion in highly invasive human HCC cell lines. Furthermore, moscatilin significantly suppressed the activity of urokinase plasminogen activator (uPA), but not matrix metalloproteinase (MMP)-2 and MMP-9. Interestingly, moscatilin-suppressed uPA activity was through down-regulation the protein level of uPA, and did not impair the uPA receptor and uPA inhibitory molecule (PAI-1) expressions. Meanwhile, the mRNA expression of uPA was inhibited via moscatilin in a concentration-dependent manner. In addition, the expression of phosphorylated Akt, rather than ERK1/2, was inhibited by moscatilin treatment. The expression of phosphor-IκBα, and -p65, as well as κB-luciferase activity were also repressed after moscatilin treatment. Transfection of constitutively active Akt (Myr-Akt) obviously restored the moscatilin-inhibited the activation of NF-κB and uPA, and cancer invasion in HCC cells. Taken together, these results suggest that moscatilin impedes HCC invasion and uPA expression through the Akt/NF-κB signaling pathway. Moscatilin might serve as a potential anti-metastatic agent against the disease progression of human HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Benzil/farmacologia , Movimento Celular/efeitos dos fármacos , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
9.
Cancer Control ; 27(1): 1073274819897975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32281394

RESUMO

TLC388, a camptothecin-derivative targeting topoisomerase I, is a potential anticancer drug. In this study, its effect on A549 and H838 human non-small cell lung cancer (NSCLC) cells was investigated. Cell viability and proliferation were determined by thiazolyl blue tetrazolium bromide and clonogenic assays, respectively, and cell cycle analysis and detection of phosphorylated histone H3 (Ser10) were performed by flow cytometry. γ-H2AX protein; G2/M phase-associated molecules ataxia-telangiectasia mutated (ATM), CHK1, CHK2, CDC25C, CDC2, and cyclin B1; and apoptosis were assessed with immunofluorescence staining, immunoblotting, and an annexin V assay, respectively. The effect of co-treatment with CHIR124 (a checkpoint kinase 1 [CHK1] inhibitor) was also studied. TLC388 decreased the viability and proliferation of cells of both NSCLC lines in a dose-dependent manner. TLC388 inhibited the viability of NSCLC cell lines with an estimated concentration of 50% inhibition (IC50), which was 4.4 and 4.1 µM for A549 and H838 cells, respectively, after 24 hours. Moreover, it resulted in the accumulation of cells at the G2/M phase and increased γ-H2AX levels in A549 cells. Levels of the G2 phase-related molecules phosphorylated ATM, CHK1, CHK2, CDC25C, and cyclin B1 were increased in TLC388-treated cells. CHIR124 enhanced the cytotoxicity of TLC388 toward A549 and H838 cells and induced apoptosis of the former. TLC388 inhibits NSCLC cell growth by inflicting DNA damage and activating G2/M checkpoint proteins that trigger G2 phase cell cycle arrest to enable DNA repair. CHIR124 enhanced the cytotoxic effect of TLC388 and induced apoptosis.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Camptotecina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Relação Dose-Resposta a Droga , Histonas/efeitos dos fármacos , Humanos
10.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111101

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, food additives, pigments, rubber manufacture, and electronic materials. Several studies have shown that ZnO-NPs inhibit cell growth and induce apoptosis by the production of oxidative stress in a variety of human cancer cells. However, the anti-cancer property and molecular mechanism of ZnO-NPs in human gingival squamous cell carcinoma (GSCC) are not fully understood. In this study, we found that ZnO-NPs induced growth inhibition of GSCC (Ca9-22 and OECM-1 cells), but no damage in human normal keratinocytes (HaCaT cells) and gingival fibroblasts (HGF-1 cells). ZnO-NPs caused apoptotic cell death of GSCC in a concentration-dependent manner by the quantitative assessment of oligonucleosomal DNA fragmentation. Flow cytometric analysis of cell cycle progression revealed that sub-G1 phase accumulation was dramatically induced by ZnO-NPs. In addition, ZnO-NPs increased the intracellular reactive oxygen species and specifically superoxide levels, and also decreased the mitochondrial membrane potential. ZnO-NPs further activated apoptotic cell death via the caspase cascades. Importantly, anti-oxidant and caspase inhibitor clearly prevented ZnO-NP-induced cell death, indicating the fact that superoxide-induced mitochondrial dysfunction is associated with the ZnO-NP-mediated caspase-dependent apoptosis in human GSCC. Moreover, ZnO-NPs significantly inhibited the phosphorylation of ribosomal protein S6 kinase (p70S6K kinase). In a corollary in vivo study, our results demonstrated that ZnO-NPs possessed an anti-cancer effect in a zebrafish xenograft model. Collectively, these results suggest that ZnO-NPs induce apoptosis through the mitochondrial oxidative damage and p70S6K signaling pathway in human GSCC. The present study may provide an experimental basis for ZnO-NPs to be considered as a promising novel anti­tumor agent for the treatment of gingival cancer.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Neoplasias Gengivais/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/química , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Óxido de Zinco/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Gengiva , Humanos , Queratinócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
11.
J Clin Med ; 9(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024132

RESUMO

Neoadjuvant concurrent chemoradiotherapy (CCRT) followed by surgery is widely used for treating locally advanced esophageal cancer in the thorax. This study evaluated the feasibility of neoadjuvant CCRT as a larynx preservation strategy for treating cervical esophageal squamous cell carcinoma (SCC) by a multidisciplinary team. Fifteen patients with cervical esophageal SCC who received neoadjuvant CCRT and radical surgery at our institution were reviewed. All patients received CCRT using the intensity-modulated radiation therapy with 48 Gy to gross tumor and 43.2 Gy to regional lymphatic basin in 24 fractions. Side effects, clinical tumor responses, pathological responses, and surgical margin status were analyzed. Pathological T down-staging was noted in seven patients (46.7%); pathological complete response was achieved in three patients (20%). Fourteen patients (93.3%) had larynx preservation; eight patients (53.3%) achieved negative surgical margins. The 2-year overall survival, local relapse-free survival, and regional relapse-free survival were 50.6%, 62.2%, and 47.5%, respectively. Neoadjuvant CCRT and larynx-sparing surgery are feasible and tolerable in patients with cervical esophageal SCC. Prospectively designed studies for large patient groups and long-term follow-up results are needed for validating this multimodality therapy.

12.
Biomolecules ; 9(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771225

RESUMO

A natural compound from Wasabia japonica, 6-(methylsulfinyl) hexyl isothiocyanate (6-MITC) was investigated for its anti-leukemia activity and mechanism of action. It was found that 6-MITC inhibited the viability of human chronic myelogenous leukemia K562 cells along with extensive mitotic arrest, spindle multipolarity, and cytoplasmic vacuole accumulation. The evidence of autophagy included the validation of autophagosomes with double-layered membranes under transmission electron microscopy, LC3I/II conversion, and the induction of G2/M phase arrest observed with acridine orange staining of treated cells, as well as the elevation of phosphorylated-histone H3 expression at the M phase. With regard to the expression of proteins related to mitosis, the downregulation of p-CHK1, p-CHK2, p-cdc25c, and p-cdc2, as well as the upregulation of cyclin B1, p-cdc20, cdc23, BubR1, Mad2, and p-plk-1 was observed. The knockdown of cdc20 was unable to block the effect of 6-MITC. The differentiation of k562 cells into monocytes, granulocytes, and megakaryocytes was not affected by 6-MITC. The 6-MITC-induced unique mode of cell death through the concurrent induction of mitosis and autophagy may have therapeutic potential. Further studies are required to elucidate the pathways associated with the counteracting occurrence of mitosis and autophagy.


Assuntos
Isotiocianatos/farmacologia , Leucemia/fisiopatologia , Mitose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Wasabia/química , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Histonas/metabolismo , Humanos , Células K562 , Leucemia/tratamento farmacológico , Leucemia/metabolismo
13.
Phytomedicine ; 64: 152911, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454653

RESUMO

Background Garcimultiflorone K is a novel polyprenylated polycyclic acylphloroglucinol isolated from the stems of Garcinia multiflora that exhibits promising anti-angiogenic activity in human endothelial progenitor cells (EPCs). Purpose This study sought to determine the underlying anti-angiogenic mechanisms and pharmacological properties of garcimultiflorone K. Methods We examined the anti-angiogenic effects of garcimultiflorone K and its mechanisms of action using in vitro EPC models and in vivo zebrafish embryos. Results EPCs proliferation, migration, differentiation and capillary-like tube formation were effectively and concentration-dependently inhibited by garcimultiflorone K without any signs of cytotoxicity. Our investigations revealed that garcimultiflorone K suppressed EPCs angiogenesis through Akt, mTOR, p70S6K, and eNOS signaling cascades. Notably, garcimultiflorone K dose-dependently impeded angiogenesis in zebrafish embryos. Conclusion Our data demonstrate the anti-angiogneic effects of garcimultiflorone K in both in vitro and in vivo models. Garcimultiflorone K appears to have potential in the treatment of angiogenesis-related diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Garcinia/química , Neovascularização Patológica/tratamento farmacológico , Floroglucinol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Inibidores da Angiogênese/química , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Progenitoras Endoteliais/efeitos dos fármacos , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Floroglucinol/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra
14.
Mar Drugs ; 17(4)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959907

RESUMO

Lymphangiogenesis is an important biological process associated with cancer metastasis. The development of new drugs that block lymphangiogenesis represents a promising therapeutic strategy. Marine fungus-derived compound phomaketide A, isolated from the fermented broth of Phoma sp. NTOU4195, has been reported to exhibit anti-angiogenic and anti-inflammatory effects. However, its anti-lymphangiogenic activity has not been clarified to date. In this study, we showed that phomaketide A inhibited cell growth, migration, and tube formation of lymphatic endothelial cells (LECs) without an evidence of cytotoxicity. Mechanistic investigations revealed that phomaketide A reduced LECs-induced lymphangiogenesis via vascular endothelial growth factor receptor-3 (VEGFR-3), protein kinase Cδ (PKCδ), and endothelial nitric oxide synthase (eNOS) signalings. Furthermore, human proteome array analysis indicated that phomaketide A significantly enhanced the protein levels of various protease inhibitors, including cystatin A, serpin B6, tissue factor pathway inhibitor (TFPI), and tissue inhibitor matrix metalloproteinase 1 (TIMP-1). Importantly, phomaketide A impeded tumor growth and lymphangiogenesis by decreasing the expression of LYVE-1, a specific marker for lymphatic vessels, in tumor xenograft animal model. These results suggest that phomaketide A may impair lymphangiogenesis by suppressing VEGFR-3, PKCδ, and eNOS signaling cascades, while simultaneously activating protease inhibitors in human LECs. We document for the first time that phomaketide A inhibits lymphangiogenesis both in vitro and in vivo, which suggests that this natural product could potentially treat cancer metastasis.


Assuntos
Inibidores da Angiogênese/farmacologia , Antinematódeos/farmacologia , Ascomicetos/química , Linfangiogênese/efeitos dos fármacos , Policetídeos/farmacologia , Células A549 , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/uso terapêutico , Animais , Antinematódeos/isolamento & purificação , Antinematódeos/uso terapêutico , Organismos Aquáticos/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Metástase Linfática , Vasos Linfáticos/citologia , Masculino , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Policetídeos/isolamento & purificação , Policetídeos/uso terapêutico , Proteína Quinase C-delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Clin Med ; 8(2)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764514

RESUMO

Esophageal cancer prognosis remains poor in current clinical practice. We previously reported that moscatilin can induce apoptosis and mitotic catastrophe in esophageal cancer cells, accompanied by upregulation of polo-like kinase 1 (Plk1) expression. We aimed to validate in vitro activity and Plk1 expression in vivo following moscatilin treatment and to examine the treatment's radiosensitizing effect. Human esophageal cancer cells were implanted in nude mice. Moscatilin was intraperitoneally (i.p.) injected into the mice. Tumor size, body weight, white blood cell counts, and liver and renal function were measured. Aberrant mitosis and Plk1 expression were assessed. Colony formation was used to measure survival fraction after radiation. Moscatilin significantly suppressed tumor growth in mice bearing human esophageal xenografts without affecting body weight, white blood cell counts, or liver and renal function. Moscatilin also induced aberrant mitosis and apoptosis. Plk1 expression was markedly upregulated in vivo. Moreover, moscatilin pretreatment enhanced CE81T/VGH and BE3 cell radioresponse in vitro. Moscatilin may inhibit growth of human esophageal tumors and sensitize esophageal cancer cells to radiation therapy.

16.
Food Chem Toxicol ; 124: 400-410, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30576710

RESUMO

Concurrent chemotherapy and radiotherapy (RT) is important for controlling oral squamous cell carcinoma (OSCC), which is often accompanied by significant acute and late toxicities. We investigated whether cordycepin, a small molecule extracted from Cordyceps sinensis, could enhance the radiosensitivity of oral cancer cells. Using colony formation assay, we demonstrated that cordycepin induces radiosensitizing effects on two OSCC cells. DNA histogram analysis showed that cordycepin combined with RT prolonged the RT-induced G2/M phase arrest. It protracted the duration of DNA double strand breaks, which was detected by immunofluorescent staining of phosphorylated histone H2AX (γ-H2AX). The underlying molecular mechanism might involve the downregulation of protein expression related to DNA damage repair, including phosphorylated ataxia-telangiectasia mutated (p-ATM) and phosphorylated checkpoint kinase 2. Reciprocal upregulation of phosphorylated checkpoint kinase 1 (Chk1) expression was noted, and the radiosensitizing effect of cordycepin could be further augmented by Chk1 mRNA knockdown, indicating a compensatory DNA repair machinery involving phosphorylation of Chk1. In vivo, the combination of cordycepin and RT exhibited greater growth inhibition on xenografts and stronger apoptosis induction than RT alone, without exacerbating major toxicities. In conclusion, cordycepin increased the radiosensitivity of OSCC cells, which is associated with the modulation of RT-induced DNA damage repair machinery.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Cordyceps/química , Reparo do DNA/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Neoplasias Bucais/tratamento farmacológico , Radiossensibilizantes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C
17.
Medicine (Baltimore) ; 97(42): e12739, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30334958

RESUMO

The aim of this study was to examine the effect of the level-1 Yo-Yo intermittent recovery test (YYIRT1) on polarization of macrophages in young football players.Fourteen male football players (19.9 ±â€Š1.4 years old) were enrolled in this study. YYIRT1 was performed with 20-meter shuttle runs at increasing speeds and 10-second active recovery in a 5-meter distance between runs till exhaustion. Fasting blood samples were collected before and immediately after YYIRT1. Analysis for macrophage polarization by flow cytometry, reactive oxygen species (ROS) by flow cytometry, biochemical parameters by chemical reactions, and serum cytokines by ELISA were performed. The rating of perceived exertion (RPE) and cardiovascular parameters were recorded.The time to exhaustion was 714.1 ±â€Š114.4 seconds. The oxygen uptake ((Equation is included in full-text article.)) was 48.7 ±â€Š5.6 mL/min/kg, RPE scale was 19 ±â€Š1, resting heart rate and maximal heart rate were 64.9 ±â€Š8.8 beat/min and 181.9 ±â€Š9.3 beat/min, respectively, indicating a high level of cardiopulmonary fitness. The expression of macrophage-specific CD14 and M1 marker HLA-ABC, but not M2 marker CD206, was down-regulated after YYIRT1. The intracellular ROS levels in macrophages had no significant change. In biochemical profile, the serum levels of lactic dehydrogenase (LDH), a marker of muscle damage, increased after YYIRT1 whereas no significant alteration was noted in creatine phosphokinase (CPK), blood urine nitrogen, creatinine, aspartate transaminase (AST), alanine transaminase (ALT), and C-reactive protein. The serum levels of interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α had no significant change.The YYIRT1 may induce muscle damage accompanied by modulation of macrophage polarization toward suppression of M1 phenotype in young football players.


Assuntos
Desempenho Atlético/fisiologia , Teste de Esforço/métodos , Futebol Americano/fisiologia , Macrófagos/fisiologia , Futebol/fisiologia , Adolescente , Citocinas/sangue , Frequência Cardíaca/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Recuperação de Função Fisiológica , Adulto Jovem
18.
Molecules ; 23(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248933

RESUMO

6-(methylsulfinyl) hexyl isothiocyanate (6-MITC) is a naturally occurring compound isolated from Wasabia japonica (wasabi). The synthetic derivatives, 6-(methylsulfenyl) hexyl isothiocyanate (I7447) and 6-(methylsulfonyl) hexyl isothiocyanate (I7557), were derived from 6-MITC with the deletion and addition of oxygen, respectively. We aimed to evaluate the effect of these synthetic compounds on human oral cancer cells, SAS and OECM-1. All three compounds (I7447, 6-MITC, and I7557) inhibited the viability of SAS and OECM-1 cells using MTT assay. Morphological observations showed various proportions of mitotic arrest and apoptosis in cells treated with these compounds. Cell cycle analysis revealed relatively abundant G2/M arrest in 6-MITC and I7557-treated cells, whereas sub-G1 accumulation was found in I7447-treated cells. In using phosphorylated histone H3 as a marker for mitosis, the addition of 6-MITC and I7557 (excluding I7447) could be shown to arrest cells during mitosis. In contrast, I7447 induced more prominent apoptosis than the 6-MITC or I7557 compounds. The down-regulated expression of the phosphorylated form of CHK1 and Cdc25c was noted in 6-MITC and I7557-treated cells. I7557 could sensitize SAS cells to death by radiation. The wasabi compound, 6-MITC, and its chemical derivatives with different numbers of oxygen may have differential pharmacological effects on human oral cancer cells.


Assuntos
Antineoplásicos/síntese química , Quinase 1 do Ponto de Checagem/metabolismo , Isotiocianatos/síntese química , Neoplasias Bucais/metabolismo , Wasabia/química , Fosfatases cdc25/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Isotiocianatos/química , Isotiocianatos/farmacologia , Neoplasias Bucais/tratamento farmacológico , Oxigênio/química , Fosforilação , Extratos Vegetais/química
19.
Oncotarget ; 8(51): 88563-88574, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29179457

RESUMO

PURPOSE: The induction of autophagic cell death is an important process in the development of anticancer therapeutics. We aimed to evaluate the activity of the ancient Chinese decoction Danggui Buxue Tang (DBT) against colorectal cancer (CRC) and the associated autophagy-related mechanism. MATERIALS AND METHODS: CT26 CRC cells were implanted into syngeneic BALB/c mice for the tumor growth assay. DBT extracts and DBT-PD (polysaccharide-depleted) fractions were orally administered. The toxicity profiles of the extracts were analyzed using measurements of body weight, hemogram, and biochemical parameters. The morphology of tissue sections was observed using light and transmission electron microscopy. Western blotting and small interference RNA assays were used to determine the mechanism. RESULTS: DBT-PD and DBT, which contained an equal amount of DBT-PD, inhibited CT26 syngeneic tumor growth. In the tumor specimen, the expression of microtubule-associated proteins 1A/1B light chain 3B (LC3B) was upregulated by DBT-PD and DBT. The development of autophagosomes was observed via transmission electron microscopy in tumors treated with DBT-PD and DBT. In vitro experiments for mechanism clarification demonstrated that DBT-PD could induce autophagic death in CT26 cells accompanied by LC3B lipidation, downregulation of phospho-p70s6k, and upregulation of Atg7. RNA interference of Atg7, but not Atg5, partially reversed the effect of DBT-PD on LC3B lipidation and expression of phospho-p70s6k and Atg7. The changes in ultrastructural morphology and LC3B expression induced by DBT-PD were also partially blocked by the knockdown of Atg7 mRNA. CONCLUSION: DBT induced autophagic death of colorectal cancer cells through the upregulation of Atg7 and modulation of the mTOR/p70s6k signaling pathway.

20.
Int Immunopharmacol ; 51: 25-30, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28772243

RESUMO

Daphnoretin, an active constituent of Wikstroemia indica C.A. Meys, has been shown possessing anti-cancer activity. In this study, we examined the effect of daphnoretin on differentiation and maturation of human myeloid dendritic cells (DCs). After treatment with daphnoretin (0, 1.1, 3.3, 10 and 30µM) to initiate monocytes, the recovery rate of DCs was reduced in a dose-dependent manner. The mature DCs differentiated in the presence of daphnoretin had fewer and shorter dendrites. Daphnoretin modulated DCs differentiation and maturation in terms of lower expression of CD1a, CD40, CD83, DC-SIGN, and HLA-DR. Daphnoretin inhibited the allostimulatory activity of DCs on proliferation of naive CD4+CD45+RA+ T cell. On the mitogen-activated protein kinase, daphnoretin down-regulated the lipopolysaccharide-augmented expression of phosphorylated c-Jun N-terminal kinase (pJNK), but not p38 and extracellular signal-regulated kinase 1/2 (ERK1/2). Activation of JNK by anisomycin reversed the effect of daphnoretin on daphnoretin-inhibited pJNK expression and dendrite formation of DCs. In disease model related to maturation of DCs, daphnoretin suppressed the acute rejection of skin allografts in mice. Our results suggest that daphnoretin modulated differentiation and maturation of DCs toward a state of atypical maturation with impaired allostimulatory function and this effect may go through down-regulation of phosphorylated JNK.


Assuntos
Antineoplásicos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Cumarínicos/farmacologia , Células Dendríticas/fisiologia , Rejeição de Enxerto/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transplante de Pele , Doença Aguda , Animais , Anisomicina/farmacologia , Diferenciação Celular , Células Cultivadas , Dendritos/patologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Modelos Animais de Doenças , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante Homólogo , Wikstroemia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA