Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 1: 178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393775

RESUMO

Defective arginine synthesis, due to the silencing of argininosuccinate synthase 1 (ASS1), is a common metabolic vulnerability in cancer, known as arginine auxotrophy. Understanding how arginine depletion kills arginine-auxotrophic cancer cells will facilitate the development of anti-cancer therapeutic strategies. Here we show that depletion of extracellular arginine in arginine-auxotrophic cancer cells causes mitochondrial distress and transcriptional reprogramming. Mechanistically, arginine starvation induces asparagine synthetase (ASNS), depleting these cancer cells of aspartate, and disrupting their malate-aspartate shuttle. Supplementation of aspartate, depletion of mitochondria, and knockdown of ASNS all protect the arginine-starved cells, establishing the causal effects of aspartate depletion and mitochondrial dysfunction on the arginine starvation-induced cell death. Furthermore, dietary arginine restriction reduced tumor growth in a xenograft model of ASS1-deficient breast cancer. Our data challenge the view that ASNS promotes homeostasis, arguing instead that ASNS-induced aspartate depletion promotes cytotoxicity, which can be exploited for anti-cancer therapies.

2.
Autophagy ; 14(9): 1481-1498, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956571

RESUMO

Defects in basal autophagy limit the nutrient supply from recycling of intracellular constituents. Despite our understanding of the prosurvival role of macroautophagy/autophagy, how nutrient deprivation, caused by compromised autophagy, affects oncogenic KRAS-driven tumor progression is poorly understood. Here, we demonstrate that conditional impairment of the autophagy gene Atg5 (atg5-KO) extends the survival of KRASG12V-driven tumor-bearing mice by 38%. atg5-KO tumors spread more slowly during late tumorigenesis, despite a faster onset. atg5-KO tumor cells displayed reduced mitochondrial function and increased mitochondrial fragmentation. Metabolite profiles indicated a deficiency in the nonessential amino acid asparagine despite a compensatory overexpression of ASNS (asparagine synthetase), key enzyme for de novo asparagine synthesis. Inhibition of either autophagy or ASNS reduced KRASG12V-driven tumor cell proliferation, migration, and invasion, which was rescued by asparagine supplementation or knockdown of MFF (mitochondrial fission factor). Finally, these observations were reflected in human cancer-derived data, linking ASNS overexpression with poor clinical outcome in multiple cancers. Together, our data document a widespread yet specific asparagine homeostasis control by autophagy and ASNS, highlighting the previously unrecognized role of autophagy in suppressing the metabolic barriers of low asparagine and excessive mitochondrial fragmentation to permit malignant KRAS-driven tumor progression.


Assuntos
Autofagia , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Asparagina/farmacologia , Aspartato-Amônia Ligase/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Metabolismo Energético , Humanos , Metabolômica , Camundongos Knockout , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Invasividade Neoplásica , Consumo de Oxigênio , Prognóstico , Neoplasias das Glândulas Salivares/patologia , Análise de Sobrevida
3.
Oncotarget ; 7(23): 34052-69, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058900

RESUMO

Up-regulation of hypoxia-inducible factor-1α (HIF-1α), even in normoxia, is a common feature of solid malignancies. However, the mechanisms of increased HIF-1α abundance, and its role in regulating breast cancer plasticity are not fully understood. We have previously demonstrated that dimethyl-2-ketoglutarate (DKG), a widely used cell membrane-permeable α-ketoglutarate (α-KG) analogue, transiently stabilizes HIF-1α by inhibiting prolyl hydroxylase 2. Here, we report that breast cancer tumorigenicity can be acquired through prolonged treatment with DKG. Our results indicate that, in response to prolonged DKG treatment, mitochondrial respiration becomes uncoupled, leading to the accumulation of succinate and fumarate in breast cancer cells. Further, we found that an early increase in the oxygen flux rate was accompanied by a delayed enhancement of glycolysis. Together, our results indicate that these events trigger a dynamic enrichment for cells with pluripotent/stem-like cell markers and tumorsphere-forming capacity. Moreover, DKG-mediated metabolic reprogramming results in HIF-1α induction and reductive carboxylation pathway activation. Both HIF-1α accumulation and the tumor-promoting metabolic state are required for DKG-promoted tumor repopulation capacity in vivo. Our data suggest that mitochondrial adaptation to DKG elevates the ratio of succinate or fumarate to α-KG, which in turn stabilizes HIF-1α and reprograms breast cancer cells into a stem-like state. Therefore, our results demonstrate that metabolic regulation, with succinate and/or fumarate accumulation, governs the dynamic transition of breast cancer tumorigenic states and we suggest that HIF-1α is indispensable for breast cancer tumorigenicity.


Assuntos
Neoplasias da Mama/patologia , Transformação Celular Neoplásica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácidos Cetoglutáricos/farmacologia , Mitocôndrias/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia
4.
J Nucl Med ; 57(1): 70-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26471690

RESUMO

UNLABELLED: With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. METHODS: First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. RESULTS: There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. CONCLUSION: Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions.


Assuntos
Quelantes/administração & dosagem , Meios de Contraste/efeitos adversos , Fluordesoxiglucose F18 , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estadiamento de Neoplasias , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
5.
Pediatr Cardiol ; 37(2): 232-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26385471

RESUMO

ACC/AHA guidelines recommend a structured preparation for and transfer to adult-oriented cardiac care for adult survivors of pediatric onset heart disease (POHD). Given this, we sought to describe the transition and transfer practices for a cohort of young adults with POHD and to determine factors associated with successful transfer to adult-oriented cardiac care. We performed a single-center, retrospective chart review on patients ≥18 years of age, with POHD likely to require lifelong cardiac care, who were seen in outpatient pediatric cardiology (PC) between 2008 and 2011. Successful transfer was defined as the subsequent attendance at adult cardiology (AC) within 2 years of PC visit. We identified 118 patients who met study criteria. Mean age 22.4 ± 2.0 years, 59 % male, 64 % white and 40 % Hispanic. Mean transition education topics noted was 3.3 ± 1.8 out of 20 and covered the underlying cardiac disease (89 %), follow-up and current medications (56 %) and exercise limitations (34 %). Recommendations for follow-up were AC (57 %) and PC (33 %). Of those told to transfer to AC, 79 % successfully transferred. Characteristics of successful transfer included: prior cardiac surgery (p = 0.008), cardiac medication use (p = 0.006) and frequency of follow-up ≤1 year (p = 0.037). One-quarter of all subjects did not follow-up within at least 2 years. Despite published guidelines, transition education appears lacking and the approach to transfer to adult cardiac care is not consistent. Given the increased risk of morbidity and mortality in this patient population, standardization of transition education and transfer processes appear warranted.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Cardiopatias Congênitas/terapia , Sobreviventes/estatística & dados numéricos , Transição para Assistência do Adulto/normas , Adulto , Feminino , Humanos , Modelos Logísticos , Perda de Seguimento , Masculino , Análise Multivariada , Guias de Prática Clínica como Assunto , Encaminhamento e Consulta , Estudos Retrospectivos , Adulto Jovem
6.
J Allergy Clin Immunol ; 130(1): 195-204.e9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22521247

RESUMO

BACKGROUND: Newborns have frequent infections and manifest impaired vaccine responses, motivating a search for neonatal vaccine adjuvants. Alum is a neonatal adjuvant but might confer a T(H)2 bias. Toll-like receptor (TLR) agonists are candidate adjuvants, but human neonatal cord blood monocytes demonstrate impaired T(H)1-polarizing responses to many TLR agonists caused by plasma adenosine acting through cyclic AMP. TLR8 agonists, including imidazoquinolines (IMQs), such as the small synthetic 3M-002, induce adult-level TNF from neonatal monocytes, but the scope and mechanisms of IMQ-induced activation of neonatal monocytes and monocyte-derived dendritic cells (MoDCs) have not been reported. OBJECTIVE: We sought to characterize IMQ-induced activation of neonatal monocytes and MoDCs. METHODS: Neonatal cord and adult peripheral blood monocytes and MoDCs were cultured in autologous plasma; levels of alum- and TLR agonist-induced cytokines and costimulatory molecules were measured. TLR8 and inflammasome function were assayed by using small interfering RNA and Western blotting/caspase-1 inhibitory peptide, respectively. The ontogeny of TLR8 agonist-induced cytokine responses was defined in rhesus macaque whole blood ex vivo. RESULTS: IMQs were more potent and effective than alum at inducing TNF and IL-1ß from monocytes. 3M-002 induced robust TLR pathway transcriptome activation and T(H)1-polarizing cytokine production in neonatal and adult monocytes and MoDCs, signaling through TLR8 in an adenosine/cyclic AMP-refractory manner. Newborn MoDCs displayed impaired LPS/ATP-induced caspase-1-mediated IL-1ß production but robust 3M-002-induced caspase-1-mediated inflammasome activation independent of exogenous ATP. TLR8 IMQs induced robust TNF and IL-1ß in whole blood of rhesus macaques at birth and infancy. CONCLUSIONS: IMQ TLR8 agonists engage adenosine-refractory TLR8 and inflammasome pathways to induce robust monocyte and MoDC activation and represent promising neonatal adjuvants.


Assuntos
Adenosina/metabolismo , Caspase 1/metabolismo , Células Dendríticas/imunologia , Imidazóis/farmacologia , Monócitos/imunologia , Quinolinas/farmacologia , Receptor 8 Toll-Like/agonistas , Adjuvantes Imunológicos , Adulto , Compostos de Alúmen , Animais , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Recém-Nascido , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA