Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 140: 112804, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079345

RESUMO

BACKGROUND: Lung cancer is a highly aggressive and prevalent disease worldwide. By the time it is first diagnosed, distant metastases have usually already occurred. Among them, the prognosis of patients with brain metastasis from lung cancer is very poor. Therefore, it is particularly important to identify the evolutionary status of tumor cells during lung cancer brain metastases and discover the underlying mechanisms of lung cancer brain metastases. METHODS: In this study, we analysed three types of data: single-cell RNA sequencing, bulk RNA sequencing, and spatial transcriptome. Firstly, we identified early metastatic epithelial cell clusters (EMEC) using CNV and trajectory analysis in scRNA-seq data. Secondly, we integrated scRNA-seq and spatial transcriptome data with the help of MIA (Multimodal intersection analysis) to explore the biological characteristics of EMEC. Finally, we used bulk RNA-seq data to validate the molecular characteristics of EMEC. RESULT: A total of 55,763 single cells were obtained and divided into 9 cell types. In brain metastasis, we found a significantly higher proportion of epithelial cells. In addition, we identified a specific subpopulation of epithelial cells, which was named as "early metastatic epithelial cell clusters (EMEC)". It is enriched in oxidative phosphorylation, coagulation, complement. Moreover, we also found that EMEC underwent cellular communication with other immune cells through ligand-receptor pairs such as MIF-(CD74 + CXCR4) and MIF-(CD74 + CD44). Next, we validated that EMEC were associated with poor clinical prognosis using three independent external datasets. Finally, spatial transcriptome analysis revealed specificity in the spatial distribution of EMEC, which shifted from the peripheral regions to the central regions of the tumour as the depth of tumor invasion progressed. CONCLUSION: This study reveals the potential molecular mechanisms of lung cancer brain metastasis from both single-cell and spatial transcriptomic perspectives, providing biological insights and clinical reference value for detecting patients suffering from lung cancer brain metastasis.

2.
ACS Appl Mater Interfaces ; 16(25): 32027-32044, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38867426

RESUMO

Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. ß-Cyclodextrin (ß-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. ß-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Materiais Biomiméticos , Colesterol , Dopamina , Macrófagos , Metotrexato , Nanopartículas , Dopamina/química , Dopamina/farmacologia , Nanopartículas/química , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Metotrexato/química , Metotrexato/farmacologia , Colesterol/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Portadores de Fármacos/química , beta-Ciclodextrinas
3.
Biofactors ; 50(3): 592-607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38149461

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors. There is an urgent need to find more effective drugs that inhibit NSCLC. Fargesin (FGS) has demonstrated anti-tumor effects; however, its efficacy and the molecular mechanism of inhibiting NSCLC are unclear. Herein, we investigated FGS' inhibitory effects on NSCLC by CCK8 and EdU assays and cell cycle analysis of A549 cells in vitro and in a nude mouse tumor transplantation model in vivo. FGS (10-50 µM) significantly inhibited cell proliferation and down-regulated expression levels of CDK1 and CCND1. Transcriptomic analysis showed that FGS regulated the cell metabolic process pathway. Differential metabolites with FGS treatment were enriched in glycolysis and pyruvate pathways. Cell metabolism assay were used to evaluate the oxygen consumption rate (OCR), Extracellular acidification rate (ECAR) in A549 cells. FGS also inhibited the production of cellular lactate and the expression of LDHA, LDHB, PKM2, and SLC2A1. These genes were identified as important oncogenes in lung cancer, and their binding to FGS was confirmed by molecular docking simulation. Notably, the over-expression and gene silencing experiments signified PKM2 as the molecular target of FGS for anti-tumorigenesis. Moreover, the H3 histone lactylation, were correlated with tumorigenesis, were inhibited with FGS treatment. Conclusively, FGS inhibited the aerobic glycolytic and H3 histone lactylation signaling pathways in A549 NSCLC cells by targeting PKM2. These findings provide evidence of the therapeutic potential of FGS in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Transporte , Proliferação de Células , Histonas , Neoplasias Pulmonares , Proteínas de Ligação a Hormônio da Tireoide , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Animais , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Histonas/metabolismo , Histonas/genética , Células A549 , Proliferação de Células/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos Nus , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Simulação de Acoplamento Molecular , Lignanas/farmacologia
4.
Cancer Biomark ; 36(2): 147-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36591653

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, which makes prognostic prediction challenging.We aimed to investigate association of TNFRSF4 expression with the immune infiltration and gene mutation in HCC. METHODS: In this study, the expression profiles and corresponding clinical data of HCC patients were downloaded from the Cancer Genome Atlas (TCGA) database.Kaplan-Meier and Cox regression were used to evaluate the clinical value of TNFRSF4. ESTIMATE and CIBERSORT algorithms were applied to investigate the infiltration ratio of 22 immune cells. The WGCNA and LASSO COX algorithms were performed, establishing a prognostic risk model that was then validated by HCC samples from GEO. Finally, the effects on gene mutation occurring in HCC patients of TNFRSF4 expression and risk score were appraised. RESULTS: In HCC tissues, it was found the TNFRSF4 expression profile was significantly different with age, gender, tumor grade, disease stage, prominently affecting the survival outcome and prognosis of patients. Univariate and multivariate COX regression analysis suggested that TNFRSF4 was an independent prognostic marker. Samples of high/low expression of TNFRSF4 were screened for differential genes, and then the WGCNA and LASSO COX constructed a 13-gene signature, excellently dividing samples into hign/low risk groups. Compared with the low-risk group, the overall survival (OS) of high-risk group was markedly lower, with P< 0.0001. By ROC curve analysis, the predictive ability of the 13-gene signature was further confirmed. Both the high/low TNFRSF4 expression and the high/low risk score were demonstrated to exert effects on the frequency of gene mutation in HCC. CONCLUSIONS: As an independent prognostic marker of HCC, TNFRSF4 was found simultaneously to affect the immune infiltration of cells and the frequency of gene mutations.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mutação , Fatores de Risco , Algoritmos , Prognóstico , Receptores OX40
5.
Cancer Biomark ; 35(3): 305-320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36373311

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Due to the lack of specific characteristics in the early stage of the disease, patients are usually diagnosed in the advanced stage of disease progression. OBJECTIVE: This study used machine learning algorithms to identify key genes in the progression of hepatocellular carcinoma and constructed a prediction model to predict the survival risk of HCC patients. METHODS: The transcriptome data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differential expression analysis and COX proportional-hazards model participated in the identification of survival-related genes. K-Means, Random forests, and LASSO regression are involved in identifying novel subtypes of HCC and screening key genes. The prediction model was constructed by deep neural networks (DNN), and Gene Set Enrichment Analysis (GSEA) reveals the metabolic pathways where key genes are located. RESULTS: Two subtypes were identified with significantly different survival rates (p< 0.0001, AUC = 0.720) and 17 key genes associated with the subtypes. The accuracy rate of the deep neural network prediction model is greater than 93.3%. The GSEA analysis found that the survival-related genes were significantly enriched in hallmark gene sets in the MSigDB database. CONCLUSIONS: In this study, we used machine learning algorithms to screen out 17 genes related to the survival risk of HCC patients, and trained a DNN model based on them to predict the survival risk of HCC patients. The genes that make up the model are all key genes that affect the formation and development of cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Redes Neurais de Computação , Aprendizado de Máquina , Algoritmos
6.
Genes (Basel) ; 13(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140823

RESUMO

The most prevalent subtype of renal cell carcinoma (RCC), kidney renal clear cell carcinoma (KIRC) may be associated with a poor prognosis in a high number of cases, with a stage-specific prognostic stratification currently in use. No reliable biomarkers have been utilized so far in clinical practice despite the efforts in biomarker research in the last years. Nonsense-mediated mRNA decay (NMD) is a critical safeguard against erroneous transcripts, particularly mRNA transcripts containing premature termination codons (called nonsense-mediated decay targeted RNA, ntRNA). In this study, we first characterized 296 differentially expressed ntRNAs that were independent of the corresponding gene, 261 differentially expressed miRNAs, and 4653 differentially expressed lncRNAs. Then, we constructed a hub ntRNA-miRNA-lncRNA triple regulatory network associated with the prognosis of KIRC. Moreover, the results of immune infiltration analysis indicated that this network may influence the changes of the tumor immune microenvironment. A prognostic model derived from the genes and immune cells associated with the network was developed to distinguish between high- and low-risk patients, which was a better prognostic than other models, constructed using different biomarkers. Additionally, correlation of methylation and ntRNAs in the network suggested that some ntRNAs were regulated by methylation, which is helpful to further study the causes of abnormal expression of ntRNAs. In conclusion, this study highlighted the possible clinical implications of ntRNA functions in KIRC, proposing potential significant biomarkers that could be utilized to define the prognosis and design personalized treatment plans in kidney cancer management in the next future.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Longo não Codificante , Biomarcadores/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Códon sem Sentido , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Prognóstico , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Microambiente Tumoral
7.
Front Pharmacol ; 13: 909668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686655

RESUMO

Liver cirrhosis is one of the most common cause of death in the world. The progress of liver cirrhosis involves health, liver cirrhosis and liver cancer, leading to great challenges in the diagnosis of the disease. Drug targets, which could be obtained conveniently, can help clinicians improve prognosis and treatment. Liver cirrhosis is associated with serum calcium levels. And studies reported Tanshinone IIA plays a therapeutic role in liver injury through activating calcium-dependent apoptosis. In this study, we explored the diagnostic key targets of Tanshinone IIA in liver cirrhosis through exploration of comprehensive dataset including health, liver cirrhosis and liver cancer patients. The unsupervised consensus clustering algorithm identified 3 novel subtypes in which differentially expressed genes (DEGs) between both subtypes were found by pairwise comparison. Then, 4 key drug targets of Tanshinone IIA were determined through the intersection of these DEGs. The diagnostic performance of target genes was assessed and further verified in the external dataset. We found that the 4 key drug targets could be used as effective diagnostic biomarkers. Then the immune scores in the high and low expression groups of target genes were estimated to identify significantly expressed immune cells. In addition, the immune infiltration of high and low target gene expression groups in several immune cells were significantly different. The findings suggest that 4 key drug targets may be a simple and useful diagnostic tool for predicting patients with cirrhosis. We further studied the carcinogenesis role of AKR1C3 and TPX2 in vitro. Both mRNA and protein expression in hepatoma carcinoma cells was detected using qRT-PCR and Western blot. And the knockdown of AKR1C3 and TPX2 significantly suppressed cell proliferation, migration and invasion.

8.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769281

RESUMO

Melatonin has been indicated to ameliorate tau hyperphosphorylation in the pathogenesis of tau diseases, but the role of melatonin-receptor signal transduction has not been clearly discovered. In this study, we found intensive tau hyperphosphorylation in melatonin receptor knockout mice. Bielschowsky silver staining showed ghostlike neurofibrillary tangles in melatonin receptor-2 knockout (MT2KO) as well as melatonin receptors-1 and -2 knockout (DKO) mice, and an argyrophilic substance was deposited in melatonin receptor-1 knockout (MT1KO) mice. Furthermore, we found significantly decreased activity of protein phosphatase 2A (PP2A) by Western blot and enzyme-linked immunosorbent assay (ELISA), which was partly due to the overexpression of protein phosphatase methylesterase-1 (PME-1), but not glycogen synthase kinase-3ß (GSK-3ß), cyclin-dependent kinase 5 (CDK5) or protein kinase B (Akt). Finally, we observed a significant increase in cyclic adenosine monophosphate (cAMP) and a decrease in miR-125b-5p levels in MT1KO, MT2KO and DKO mice. Using a luciferase reporter assay, we discovered that miR-125b-5p largely decreased the expression of firefly luciferase by interfering with the 3'UTR of PME-1. Furthermore, miR-125b-5p mimics significantly decreased the expression of PME-1, while miR-125b-5p inhibitor induced tau hyperphosphorylation. These results show that melatonin-receptor signal transduction plays an important role in tau hyperphosphorylation and tangle formation.


Assuntos
Hidrolases de Éster Carboxílico/biossíntese , Regulação Enzimológica da Expressão Gênica , MicroRNAs/metabolismo , Receptores de Melatonina/deficiência , Proteínas tau/metabolismo , Animais , Hidrolases de Éster Carboxílico/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fosforilação , Receptores de Melatonina/metabolismo , Proteínas tau/genética
9.
Int Immunopharmacol ; 90: 107238, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33316739

RESUMO

BACKGROUND: Immune system instability and poor prognosis are the two major clinical performance of hepatocellular carcinoma (HCC). Abnormal expression of MiR-424-5p has been reported to accelerate the progression of liver cancer, but it mediated immune cell infiltration imbalance is still unknown. We aim to mine the immune-related genes (IRGs) targeted by miR-424-5p and construct a multi-gene signature to improve the prognostic prediction of HCC. METHODS: The HCC-related data of the cancer genome atlas (TCGA) database and the GSE14520 dataset of the gene expression omnibus (GEO) database were downloaded as the discovery dataset and the validation dataset, respectively. Weighted gene co-expression network analysis (WGCNA), the deconvolution algorithm of CIBERSORT and LASSO algorithm participated in the identification of IRGs and the development of prognostic signature and nomogram. RESULTS: Our study found that the abundance of macrophages M0, M1 and M2 are all drastically changed during the cancerous process. A total of 920 macrophages infiltration-related LRGs were identified and a novel 4-gene signature (CDCA8, CBX2, UCK2 and SOCS2) with superior prognostic independence was established. The prognostic signature based risk score has superior capability to identify high-risk patients and predict overall survival (p < 0.001; AUC = 0.798 for 1 year; AUC = 0.748 for 3 years; AUC = 0.721 for 5 years). And it (C-index = 0.726) has a better prognostic potential than the TNM stage (C-index = 0.619), which is widely adopted in clinical practice. Additionally, the nomogram formed by combining the risk score and TNM stage further improved the accuracy of survival prediction (C-index = 0.733). CONCLUSION: In summary, the immune landscape with abnormal infiltration of macrophages may be one of the prelude to the cancerous process. The novel macrophages-related 4-gene signature is expected to become a potential prognostic marker in liver cancer.


Assuntos
Algoritmos , Carcinoma Hepatocelular/genética , Imunidade Celular/genética , Neoplasias Hepáticas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , MicroRNAs/genética , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Regulação Neoplásica da Expressão Gênica , Genoma , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Nomogramas , Valor Preditivo dos Testes , Prognóstico , Curva ROC , Análise de Sobrevida , Microambiente Tumoral
10.
Front Genet ; 12: 730920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35493265

RESUMO

Background: RAC1 is involved in the progression of HCC as a regulator, but its prognostic performance and the imbalance of immune cell infiltration mediated by it are still unclear. We aim to explore the prognostic and immune properties of RAC1 in HCC. Methods: We separately downloaded the data related to HCC from the Cancer Genome Atlas (TCGA) and GEO database. CIBERSORT deconvolution algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm participate in identifying IRGs and the construction of prognostic signatures. Results: The study discovered that RAC1 expression was linked to the severity of HCC lesions, and that its high expression was linked to a poor prognosis. Cox analysis confirmed that RAC1 is a clinically independent prognostic marker. M0, M1 and M2 macrophages' abundance are significantly different in HCC. We found 828 IRGs related to macrophage infiltration, and established a novel 11-gene signature with excellent prognostic performance. RAC1-based risk score and M0 macrophage has a good ability to predict overall survival. Conclusion: The immune state of irregular macrophage infiltration may be one of the precursors to carcinogenesis. The RAC1 correlated with M0 macrophage and the risk score to show a good performance to predict the survival of HCC patients.

11.
Phytomedicine ; 78: 153305, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871523

RESUMO

BACKGROUND: Safflower yellow (SY) is the main active ingredient of safflower, with various pharmacological effects such as anticoagulating, antioxidant, and anti-arthritis effects. PURPOSE: To investigate the anti-inflammatory and chondrocyte protecting role of SY, which subsequently leads to the inhibition of cartilage degradation. METHODS: Rat chondrocytes were stimulated with tumor necrosis factor α (TNF-α) with or without SY treatment. Following this, CCK-8 assay was performed to detect cytotoxicity. RT-qPCR, Western blotting, and immunofluorescence staining were used to detect the gene/protein expression of typical cartilage matrix genes and related inflammatory markers. Subsequently, EdU assay was used to evaluate cell proliferation. RNA sequencing, online target prediction, and molecular docking were performed to determine the possible molecular targets and pathways. RESULTS: The results showed that SY restored the TNF-α-induced up-regulation of IL-1ß, PTGS2, and MMP-13 and down-regulation of COL2A1 and ACAN. Furthermore, it recovered cell proliferation by suppressing TNF-α. Gene expression profiles identified 717 differentially expressed genes (DEGs) in the cells cultured with or without SY under TNF-α stimulation. After pathway enrichment, PI3K-Akt, TNF, Cytokine-cytokine receptor interaction, NF-κB, NOD-like receptor, and Chemokine signaling pathways were notably selected to highlight NFKBIA, CCL5, CCL2, IL6, and TNF as potential targets in osteoarthritis (OA). SY inhibited TNF-α-induced activation of NF-κB and endoplasmic reticulum (ER) stress by promoting AMPK phosphorylation along with SIRT1 expression. Further, SY reduced MMP-13 expression and targeted COX-2 for decreasing PGE2 release. In addition, anterior cruciate ligament transection-induced OA was ameliorated by local administration of SY. CONCLUSION: These results demonstrate that SY protects chondrocytes and inhibits inflammation by regulating the NF-κB/SIRT1/AMPK pathways and ER stress, thus preventing cartilage degeneration in OA.


Assuntos
Chalcona/análogos & derivados , Condrócitos/efeitos dos fármacos , Dinoprostona/metabolismo , Osteoartrite/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Chalcona/química , Chalcona/farmacologia , Condrócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 13 da Matriz/genética , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
12.
Biomed Pharmacother ; 130: 110568, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745911

RESUMO

Inflammation and poor viability of chondrocytes result in the degradation of cartilage as osteoarthritis (OA) progresses. The purpose of the present study was to investigate whether ursolic acid (UA) can protect chondrocytes and alleviate OA. Following stimulation with tumor necrosis factor-α (TNF-α), 5 µM UA displayed no cytotoxicity and reversed the up-regulation of the inflammatory factors MMP13, IL-1ß, IL-6 and PTGS2, and down-regulation of the cartilaginous genes/proteins type II collagen and Aggrecan. RNA sequencing identified 533 common deferentially expressed genes (DEGs) of which TNF, PI3K-AKT, NOD-like receptor, cytokine receptor interaction and NF-κB pathways were of potential importance. Further notable DEGs in the most-highly expressed 10 pathways contributed to maintenance of cartilaginous ECM homeostasis and were involved in an inflammatory response. The expression of these most-enriched DEGs was reversed by UA following stimulation with TNF-α. Additional investigation demonstrated that treatment with UA inhibited TNF-α-induced nuclear translocation of p65 and phosphorylation of IκBα and AKT, and reversed TNF-α-induced up-regulation of P20, ACS and NLRP3. Furthermore, rat anterior cruciate ligament transection (ACLT) induced-OA was ameliorated by treatment with UA. In conclusion, these results suggest that UA activates chondrocytes through the NF-κB/NLRP3 inflammasome pathway, thus preventing cartilage degeneration in osteoarthritis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Condrócitos/efeitos dos fármacos , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite/tratamento farmacológico , Triterpenos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/metabolismo , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Masculino , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Ratos Sprague-Dawley , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa , Ácido Ursólico
13.
J Tissue Eng Regen Med ; 14(8): 1063-1076, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32483895

RESUMO

Anterior cruciate ligament (ACL) regeneration is severely affected by the injury-induced overexpression of matrix metalloproteinases (MMPs) and downregulation of lysyl oxidase (LOX). Previous studies have focused on how the expression of MMPs and downregulation of LOX are physiologically balanced at injured sites for regenerating the ACL tissue, but the role of LOX in regulating cellular functions has not been investigated yet. Herein, we conducted an in vitro cellular experiment and unexpectedly found that exogenous LOX inhibited the expression of MMPs and inflammatory factors and recovered the cell growth; thus, LOX strongly inhibited the tumor necrosis factor-alpha (TNF-α)-induced inflammatory responses. In an in vivo animal model, LOX supplementation suppressed the expression of TNF-α in injured ACLs and promoted the recovery of the damaged tissues. RNA-sequencing-identified differentially expressed genes (DEGs) were highly enriched in the nuclear factor-kappa B (NF-κB), chemokine, cytokine-cytokine receptor interaction, Toll-like receptor, and TNF signaling pathways. Immunofluorescence tracing was employed to localise the exogenous LOX in the cell nucleus; the exogenous LOX indirectly suggests that it has other biological roles apart from the cross-linking of the extracellular matrix. Protein-protein interaction network analysis revealed the anti-inflammatory effect of LOX was alleviated by silencing the myotrophin (MTPN) expression, suggesting that LOX might interact with MTPN and regulate inflammation. Finally, this study suggests that LOX can inhibit the inflammatory response of ACL fibroblasts (ACLfs) and promote the recovery of the damaged ACL tissue through the MTPN-mediated NF-κB signaling pathway.


Assuntos
Lesões do Ligamento Cruzado Anterior/metabolismo , Ligamento Cruzado Anterior/fisiologia , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , NF-kappa B/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais , Humanos , Inflamação/metabolismo , Regeneração
14.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32537629

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumor. miR-331-3p has been reported relevant to the progression of HCC, but the molecular mechanism of its regulation is still unclear. In the study, we comprehensively studied the role of miR-331-3p in HCC through weighted gene coexpression network analysis (WGCNA) based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Oncomine. WGCNA was applied to build gene co-expression networks to examine the correlation between gene sets and clinical characteristics, and to identify potential biomarkers. Five hundred one target genes of miR-331-3p were obtained by overlapping differentially expressed genes (DEGs) from the TCGA database and target genes predicted by miRWalk. The critical turquoise module and its eight key genes were screened by WGCNA. Enrichment analysis was implemented based on the genes in the turquoise module. Moreover, 48 genes with a high degree of connectivity were obtained by protein-protein interaction (PPI) analysis of the genes in the turquoise module. From overlapping genes analyzed by WGCNA and PPI, two hub genes were obtained, namely coatomer protein complex subunit zeta 1 (COPZ1) and elongation factor Tu GTP binding domain containing 2 (EFTUD2). In addition, the expression of both hub genes was also significantly higher in tumor tissues compared with normal tissues, as confirmed by analysis based on TCGA and Oncomine. Both hub genes were correlated with poor prognosis based on TCGA data. Receiver operating characteristic (ROC) curve validated that both hub genes exhibited excellent diagnostic efficiency for normal and tumor tissues.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Proteína Coatomer/genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , MicroRNAs/genética , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/terapia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/terapia , Prognóstico , Transcriptoma
15.
IEEE/ACM Trans Comput Biol Bioinform ; 17(4): 1187-1197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30892233

RESUMO

As one of the most common malignancies in the world, lung adenocarcinoma (LUAD) is currently difficult to cure. However, the advent of precision medicine provides an opportunity to improve the treatment of lung cancer. Subtyping lung cancer plays an important role in performing a specific treatment. Here, we developed a framework that combines k-means clustering, t-test, sensitivity analysis, self-organizing map (SOM) neural network, and hierarchical clustering methods to classify LUAD into four subtypes. We determined that 24 differentially expressed genes could be used as therapeutic targets, and five genes (i.e., RTKN2, ADAM6, SPINK1, COL3A1, and COL1A2) could be potential novel markers for LUAD. Multivariate analysis showed that the four subtypes could serve as prognostic subtypes. Representative genes of each subtype were also identified, which could be potentially targetable markers for the different subtypes. The function and pathway enrichment analyses of these representative genes showed that the four subtypes have different pathological mechanisms. Mutations associated with the subtypes, e.g., epidermal growth factor receptor (EGFR) mutations in subtype 4 and tumor protein p53 (TP53) mutations in subtypes 1 and 2, could serve as potential markers for drug development. The four subtypes provide a foundation for subtype-specific therapy of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares , Redes Neurais de Computação , Adenocarcinoma de Pulmão/classificação , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Algoritmos , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Análise por Conglomerados , Humanos , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação/genética , Transcriptoma/genética
16.
Cell Prolif ; 52(5): e12666, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31407423

RESUMO

OBJECTIVES: Cartilaginous tissue degradation occurs because of the lack of survival of chondrocytes. Here, we ascertained whether bakuchiol (BAK) has the capability of activating chondrocyte proliferation. MATERIALS AND METHODS: The effect of BAK on the proliferation of rat chondrocytes at a concentration of 10 and 20 µmol/L was investigated. The molecular mechanisms involving target binding and signalling pathways were elucidated by RNA-sequencing, qPCR, molecular docking and Western blotting. Matrigel mixed with bakuchiol was implanted locally into rat knee articular cartilage defects to verify the activation of chondrocytes due to bakuchiol in vivo. RESULTS: Bakuchiol implantation resulted in the activation of rat chondrocyte proliferation in a dose-dependent manner. RNA-sequencing revealed 107 differentially expressed genes (DEGs) with 75 that were up-regulated and 32 that were down-regulated, indicating increased activation of the PI3K-Akt and cell cycle pathways. Activation of the phosphorylation of Akt, ERK1/2 and their inhibitors blocked the proliferative effect of bakuchiol treatment, confirming its direct involvement in these signal transduction pathways. Molecular docking and siRNA silencing revealed that estrogen receptor-α (ERα) was the target of bakuchiol in terms of its cell proliferative effect via PI3K activation. Two weeks after implantation of bakuchiol, the appearance and physiological structure of the articular cartilage was more integrated with abundant chondrocytes and cartilage matrix compared to that of the control. CONCLUSIONS: Bakuchiol demonstrated significant bioactivity towards chondrocyte proliferation via the PI3K-Akt and ERK1/2 pathways mediated by estrogen receptor activation and exhibited enhanced promotion of the remodelling of injured cartilage.


Assuntos
Cartilagem Articular/fisiologia , Proliferação de Células/efeitos dos fármacos , Fenóis/farmacologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Condrócitos/citologia , Condrócitos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos
17.
Phytother Res ; 33(6): 1717-1725, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31016813

RESUMO

Inflammation is considered to be one of the initial critical factors in the occurrence of calcific heart valve disease. This study was to prove Nobiletin (NBT) inhibits inflammation-caused calcification of human valve interstitial cells (hVICs) and to elucidate the involved molecular mechanisms. Tumor necrosis factor-alpha (TNF-α)-induced hVICs were treated with or without NBT. Cell growth and calcification of hVICs were assessed. RNA sequencing was utilized to investigate the gene expression changes. Molecular target prediction and docking assay were further performed. NBT interfered with hVIC growth under TNF-α condition in a dose-dependent manner also presented a gradual decrease of positive Alizarin Red S staining, down-regulation of BMP2, and RUNX2 gene expression. Based on the global gene expression cluster, control and TNF-α plus NBT group showed a high similarity versus TNF-α only group. After Venn interaction of differential expression genes (DEGs), 2,236 common DEGs were identified to display different biological functions and signaling pathways. ABCG2 and AKR1B1 were further selected as prediction targets of NBT involved in RELA, TNF, BMP2, RUNX2, etc. interactions in mediating hVIC calcification. The results show that NBT is a natural product to prevent the occurrence of heart valve calcification.


Assuntos
Estenose da Valva Aórtica/prevenção & controle , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/patologia , Calcinose/prevenção & controle , Flavonas/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Flavonas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/patologia , Doenças das Valvas Cardíacas/prevenção & controle , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/efeitos adversos
18.
Int J Biol Sci ; 15(1): 229-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30662362

RESUMO

Current study examined whether psoralen (PSO) exhibits anti-inflammatory responses, protection and activation of chondrocytes, and relieve osteoarthritis (OA). Rats chondrocytes and human synoviocytes were cultured in tumor necrosis factor-α (TNF-α) conditioned culture medium with/without PSO to test the cell morphologies and cytotoxicities in vitro. Cartilaginous extracellular matrix (ECM) and proliferative gene/protein expression levels were evaluated in chondrocytes. Meanwhile, matrix metalloproteinases (MMPs) and interleukins (ILs) gene/protein expression were analyzed in synoviocytes. SD rats of monosodium iodoacetate (MIA) induced OA model were used in order to assess the effects of PSO on attenuating degeneration of the articular cartilage in vivo. Results showed TNF-α conditioned culturing with/without PSO (1-100 µM) had no any toxicity on both the cell lines. PSO (10 µM) activated cartilaginous specific ECM expression along with up-regulation of proliferative genes at transcriptional levels. Interestingly, PSO significantly reversed TNF-α induced up-regulation of MMP13 and ILs synoviocytes in a dose-dependent manner (1 to 20 µM), while down-regulated cartilaginous ECM production. Following six weeks of PSO treatments to articular cartilage osteoarthritis, compared to MIA-induced group, the appearance and physiological structure of articular cartilage was more integrated with greatly organized chondrocytes and abundant cartilage matrix. In conclusion, PSO protects and activates chondrocytes, antagonizing the expression of MMPs and ILs secreted by synovial cells, and effectively attenuates MIA-induced OA.


Assuntos
Anti-Inflamatórios/farmacologia , Condrócitos/efeitos dos fármacos , Difosfatos/toxicidade , Ficusina/farmacologia , Imidazóis/toxicidade , Osteoartrite/induzido quimicamente , Sinoviócitos/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Ficusina/uso terapêutico , Osteoartrite/tratamento farmacológico , Ratos
19.
J Knee Surg ; 32(4): 352-360, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29635650

RESUMO

This study aims to confirm the effects of synoviocytes (SCs) on regulating lysyl oxidases (LOXs) and matrix metalloproteinase (MMP)-1, 2, 3 in the normal and injured anterior cruciate ligament (ACL) fibroblasts response to tumor necrosis factor-α(TNF-α). The gene and protein expression levels of LOXs and MMP-1, 2, 3 in SCs cocultured ACL fibroblasts (ACLfs) induced by TNF-α and mechanical injury were analyzed by real-time polymerase chain reaction (PCR) and western bolting; the MMP-2 activity were analyzed by zymography. The results exhibited that TNF-α alone slightly downregulated the expressions of LOXs and upregulated the expression of MMP-1, 2, 3 in both normal and injured ACL fibroblasts. The decrease of LOXs and increase of MMP-1, 2, 3 in ACLfs response to TNF-α were further promoted by coculture. Taken together, these results show for the first time that the crosstalk between ACLfs and SCs could modulate the LOXs and MMP-1, 2, 3 synthesis in ACLfs in the presence of TNF-α. Accumulation of MMPs in the isolated fluid-containing space not only disrupts the balance of ACL healing, but also increases cartilage degradation and accelerates osteoarthritis (OA) in injured joint. Based on this mechanism, targeting inhibition of MMPs could provide a promising therapeutic strategy for acute ligament injury.


Assuntos
Ligamento Cruzado Anterior/citologia , Fibroblastos/metabolismo , Metaloproteinases da Matriz Secretadas/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adulto , Células Cultivadas , Técnicas de Cocultura , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
20.
Front Pharmacol ; 10: 1585, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063844

RESUMO

Immunotherapy has received increasing attention due to its low potential side effects and high specificity. For instance, cancer immunotherapy has achieved great success. CpG is a well-known and commonly used immunotherapeutic and vaccine adjuvant, but it has the disadvantage of being unstable and low in efficacy and needs to be transported through an effective nanocarrier. With perfect structural programmability, permeability, and biocompatibility, DNA nanostructures are one of the most promising candidates to deliver immune components to realize immunotherapy. However, the instability and low capability of the payload of ordinary DNA assemblies limit the relevant applications. Consequently, DNA nanostructure with a firm structure, high drug payloads is highly desirable. In the paper, the latest progress of biostable, high-payload DNA nanoassemblies of various structures, including cage-like DNA nanostructure, DNA particles, DNA polypods, and DNA hydrogel, are reviewed. Cage-like DNA structures hold drug molecules firmly inside the structure and leave a large space within the cavity. These DNA nanostructures use their unique structure to carry abundant CpG, and their biocompatibility and size advantages to enter immune cells to achieve immunotherapy for various diseases. Part of the DNA nanostructures can also achieve more effective treatment in conjunction with other functional components such as aPD1, RNA, TLR ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA