Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 369: 122206, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197342

RESUMO

Endophyte assisted phytoremediation of cadmium (Cd) contaminated soil represents a promising strategy. However, the precise soil ecological regulatory mechanisms by which endophyte enhance the Cd phytoextraction remain unclear. Here, we employed the plant growth promoting endophyte (PGPE) Pseudomonas sp. E3, which has been validated to effectively enhance Cd extraction in Solanum nigrum L., to investigate its regulatory mechanism on soil ecology. The results demonstrated that while PGPE inoculation resulted in minimal alterations to the physicochemical properties of the bulk soil, it led to a notable increase in acid phosphatase activity by 17.86% and urease activity by 24.85% in the rhizosphere soil. This, in turn, significantly raised the available nitrogen and phosphorus contents by 16.93% and 21.27%, respectively, in the rhizosphere soil. Additionally, PGPE inoculation effectively replenished the bioavailable fractions of Fe and Cd, which had been depleted due to root uptake. Importantly, the inoculation specifically augmented the abundance of biomarkers p_Patescibacteria, f_Saccharimonadales, and g_Saccharimonadales in the rhizosphere soil. These biomarkers exhibited a significant positive correlation with the available nutrient and metal element contents. Moreover, the co-occurrence network analysis demonstrated that the inoculation resulted in a simplified bacterial community network, which may have facilitated community synergism by displacing bacteria with a negative association. This regulation appears to occur independently of PGPE colonization. Overall, our findings suggested that PGPE also exerts a regulatory influence on soil ecological features, significantly aiding hyperaccumulators in nutrient acquisition and heavy metal accumulation.


Assuntos
Biodegradação Ambiental , Cádmio , Endófitos , Rizosfera , Poluentes do Solo , Solo , Cádmio/metabolismo , Endófitos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Microbiologia do Solo , Desenvolvimento Vegetal , Fósforo/metabolismo
2.
BMC Plant Biol ; 24(1): 567, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880885

RESUMO

Cadmium (Cd) is a nonessential element in plants and has adverse effects on the growth and development of plants. However, the molecular mechanisms of Cd phytotoxicity, tolerance and accumulation in hyperaccumulators Solanum nigrum L. has not been well understood. Here, physiology, transcriptome, and metabolome analyses were conducted to investigate the influence on the S. nigrum under 0, 25, 50, 75 and 100 µM Cd concentrations for 7 days. Pot experiments demonstrated that compared with the control, Cd treatment significantly inhibited the biomass, promoted the Cd accumulation and translocation, and disturbed the balance of mineral nutrient metabolism in S. nigrum, particularly at 100 µM Cd level. Moreover, the photosynthetic pigments contents were severely decreased, while the content of total protein, proline, malondialdehyde (MDA), H2O2, and antioxidant enzyme activities generally increased first and then slightly declined with increasing Cd concentrations, in both leaves and roots. Furthermore, combined with the previous transcriptomic data, numerous crucial coding-genes related to mineral nutrients and Cd ion transport, and the antioxidant enzymes biosynthesis were identified, and their expression pattern was regulated under different Cd stress. Simultaneously, metabolomic analyses revealed that Cd treatment significantly changed the expression level of many metabolites related to amino acid, lipid, carbohydrate, and nucleotide metabolism. Metabolic pathway analysis also showed that S. nigrum roots activated some differentially expressed metabolites (DEMs) involved in energy metabolism, which may enhance the energy supply for detoxification. Importantly, central common metabolism pathways of DEGs and DEMs, including the "TCA cycle", "glutathione metabolic pathway" and "glyoxylate and dicarboxylate metabolism" were screened using conjoint transcriptomics and metabolomics analysis. Our results provide some novel evidences on the physiological and molecular mechanisms of Cd tolerance in hyperaccumulator S. nigrum plants.


Assuntos
Cádmio , Metaboloma , Solanum nigrum , Transcriptoma , Solanum nigrum/genética , Solanum nigrum/metabolismo , Solanum nigrum/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Transcriptoma/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
3.
Chemosphere ; 341: 140092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678592

RESUMO

A novel bacterial strain, Bacillus sp. YM1, was isolated from compost for the efficient degradation of oily food waste under salt stress. The strain's lipase activity, oil degradation ability, and tolerance to salt stress were evaluated in a liquid medium. Additionally, the molecular mechanisms (including key genes and functional processes) underlying the strain's salt-resistant degradation of oil were investigated based on RNA-Seq technology. The results showed that after 24 h of microbial degradation, the degradation rate of triglycerides in soybean oil was 80.23% by Bacillus sp. YM1 at a 30 g L-1 NaCl concentration. The metabolizing mechanism of long-chain triglycerides (C50-C58) by the YM1 strain, especially the biodegradation rate of triglycerides (C18:3/C18:3/C18:3), could reach 98.65%. The most substantial activity of lipase was up to 325.77 U·L-1 at a salinity of 30 g L-1 NaCl. During salt-induced stress, triacylglycerol lipase was identified as the crucial enzyme involved in oil degradation in Bacillus sp. YM1, and its synthesis was regulated by the lip gene (M5E02_13495). Bacillus sp. YM1 underwent adaptation to salt stress through various mechanisms, including the accumulation of free amino acids, betaine synthesis, regulation of intracellular Na+/K+ balance, the antioxidative response, spore formation, and germination. The key genes involved in Bacillus sp. YM1's adaptation to salt stress were responsible for the synthesis of glutamate 5-kinase, superoxide dismutase, catalase, Na+/H+ antiporter, general stress protein, and sporogenic proteins belonging to the YjcZ family. Results indicated that the isolated strain of Bacillus sp. YM1 could significantly degrade oil in a short time under salt stress. This study would introduce new salt-tolerant strains for coping with the biodegradation of oily food waste and provide gene targets for use in genetic engineering.


Assuntos
Bacillus , Compostagem , Eliminação de Resíduos , Bacillus/genética , Alimentos , Cloreto de Sódio/farmacologia , Redes e Vias Metabólicas
4.
J Hazard Mater ; 457: 131866, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329596

RESUMO

The homeostasis regulating mechanism of endophyte enhancing cadmium (Cd) extraction by hyperaccumulator is poorly understood. Here, an endophyte strain E3 that belonged to Pseudomonas was screened from Cd hyperaccumulator Solanum nigrum L., which significantly improved the Cd phytoextraction efficiency of S. nigrum by 40.26%. The content and translocation factor of nutrient elements indicated that endophyte might regulate Cd accumulation by affecting the uptake and transport of magnesium and iron in S. nigrum. Gene transcriptional expression profile further revealed that SnMGT, SnIRT1, and SnIRT2, etc., were the key genes involved in the regulation of S. nigrum elements uptake by endophyte. However, changes in elemental homeostasis did not negatively affect plant growth. Endophyte inoculation promoted plant growth by fortifying photosynthesis as well as recruiting specific bacteria in S. nigrum endosphere, e.g., Pseudonocardiaceae, Halomonas. Notably, PICRUSt2 analysis and biochemical characterization jointly suggested that endophyte regulated starch degradation in S. nigrum leaves to maintain photosynthetic balance. Our results demonstrated that microecological characteristics of hyperaccumulator could be reshaped by endophyte, also the homeostasis regulation in endophyte enhanced hyperaccumulator Cd phytoextraction was significant.


Assuntos
Poluentes do Solo , Solanum nigrum , Cádmio/metabolismo , Endófitos/metabolismo , Solanum nigrum/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Homeostase , Solo/química
5.
Chemosphere ; 305: 135488, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35764116

RESUMO

Microorganisms affect cadmium (Cd) extraction by hyperaccumulators to varying degrees, but the potential mechanism has not been completely studied. Here, two plant growth-promoting bacteria (PGPB, Bacillus paranthracis NT1 and Bacillus megaterium NCT-2) were assessed for their influence on Cd uptake by Solanum nigrum L. and their influence mechanisms. The results showed that both two strains could regulate phytohormones secretion, alleviate oxidative stress and promote S. nigrum growth when exposed to Cd (dry weight was significantly increased by 21.51% (strain NCT-2) and 21.23% (strain NT1) compared with the control, respectively). Additionally, strain NCT-2 significantly elevated the translocation factor (TF) and bioconcentration factor (BCF), and thus significantly facilitated total Cd uptake by 41.80% of S. nigrum, whereas strain NT1 significantly reduced the BCF and TF, resulting in insignificant effect on total Cd uptake of S. nigrum compared with the control. Results of qPCR illustrated that the two strains influenced the detoxification of Cd in S. nigrum by affecting the expression of antioxidant enzyme genes and gene PDR2. Moreover, the differential expression of heavy metal transport genes IRT1 and HMA may lead to the difference of Cd accumulation in S. nigrum. Principal component analysis and Pearson correlation coefficient analysis further verified the positive roles of salicylic acid and indole-3-acetic acid on Cd detoxification of S. nigrum, and the positive correlation relationship between transportation of Cd from underground to shoot, plant biomass and Cd uptake. Altogether, our results demonstrated that these two PGPB have great potential in helping plants detoxify Cd and could provide insights into the mechanism of PGPB-assisted phytoremediation of Cd-contaminated soil.


Assuntos
Bacillus , Poluentes do Solo , Solanum nigrum , Bacillus/genética , Bacillus/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Cádmio/análise , Raízes de Plantas/metabolismo , Solo , Poluentes do Solo/análise , Solanum nigrum/metabolismo
6.
Sci Total Environ ; 741: 140422, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615431

RESUMO

Microorganisms are promising biosorbents for decontaminating cadmium-polluted soil or water systems, but the underlying remediation mechanisms are still unclear. In this study, the cadmium biosorption mechanisms and capabilities of plant growth-promoting microorganisms (Bacillus megaterium NCT-2 and Bacillus paranthracis NT1) were investigated. Batch biosorption experiments showed that the optimal biosorption conditions for B. megaterium NCT-2 and B. paranthracis NT1 were pH 6.0, a biomass dosage of 1.0 g L-1, and an initial Cd2+ concentration of 10 mg L-1, and pH 8.0, a biomass dosage of 1.0 g L-1, and an initial Cd2+ concentration of 10 mg L-1, respectively. The biosorption processes of both biosorbents were well described by the pseudo-second order kinetic model, which indicated that the biosorption of Cd2+ was mainly chemisorption. The intracellular accumulation portion of adsorbed Cd2+ in B. megaterium NCT-2 was much higher than in B. paranthracis NT1 (43.11% and 3.25%, respectively), which resulted in the lower cadmium tolerance (14 mg L-1 and 280 mg L-1, respectively) and higher cadmium removal efficiency (46.79% and 20.45%, respectively) of B. megaterium NCT-2 compared to B. paranthracis NT1. SEM-EDS and FTIR analysis suggested the probable interactions of Cd2+ with the biosorbent surface ligands, such as -OH, -NH, -SO3, CO and -COOH during surface adsorption. Results of qRT-PCR illustrated that the difference in cadmium resistant mechanism and adsorption performance between B. megaterium NCT-2 and B. paranthracis NT1 may be regulated by the genes cadA, zitB, khtT, and bshA and cadA, trkA, czcD, and bshA, respectively. Our results revealed that these two biosorbents have the potential for further use in the development of cadmium remediation technologies and could provide insight into the mechanisms of cadmium biosorption.


Assuntos
Bacillus , Poluentes Químicos da Água/análise , Adsorção , Biomassa , Cádmio/análise , Concentração de Íons de Hidrogênio , Cinética
7.
Ecotoxicol Environ Saf ; 189: 109997, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31812023

RESUMO

In the current experiment, influence of NPK composition on the Cd contaminated soil-plant (Solanum nigrum L.) system as well as the phytoremediation efficiency were comprehensively studied. The composition of NPK was optimized for a sustainable phytoremediation and simultaneous agronomic technique in Cd-contaminated soil by orthogonal (L14) experiment, aimed to achieve plant productivity and maximum phytoremediation potential enhancement. Results showed that different treatments of NPK composition enhanced soil properties including saccharase, urease, catalase and acid phosphatase activities as compared to the control treatment, however, soil pH was slightly decreased by 3.64%~6.67% with different composition of NPK treatments. Plant biomass and Cd concentration in the aboveground part (stem and leaves) of S. nigrum were significantly (P < 0.05) enhanced by 14.19%~48.97% and 38.50%~127.15% as compared to control plants with the addition of NPK fertilizers having different composition. Meanwhile, with the application of NPK fertilizer root/shoot Cd ratio and translocation factor (TF) was significantly decreased, however, bioconcentration factor (BCF) was increased as compared to control. Additionally, different composition of NPK fertilizers significantly increased photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids) and soluble protein in comparison to control. The activities of antioxidant enzymes in S. nigrum including ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and glutathione reductase (GR) were increased, while malonaldehyde (MDA) and proline contents were decreased. Principal component analysis (PCA) showed that N3P2K2 treatment had the highest comprehensive score amongst other studied treatments of NPK composition, owing to its optimal composition for the investigated soil-S. nigrum system. Moreover, it was found that optimal composition (N3P2K2) of fertilizer resulted in increase of the plant resistance to Cd and the efficiency of phytoextraction. Therefore, it is suggested to all the small-holder famers and scientific community that precise composition of NPK fertilizer should be utilized according to soil properties, environmental conditions and plant requirements under Cd-stress condition in order to achieve maximum biomass, Cd uptake efficiency as well phytoremediation potential in moderately Cd contaminated soil.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Fertilizantes , Poluentes do Solo/metabolismo , Solanum nigrum/metabolismo , Antioxidantes/metabolismo , Biomassa , Cádmio/análise , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Nitrogênio/análise , Nitrogênio/química , Fósforo/análise , Fósforo/química , Folhas de Planta/metabolismo , Potássio/análise , Potássio/química , Análise de Componente Principal , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA