Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 60(3): 360-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26882296

RESUMO

Optic neuritis (ON) is an inflammatory, demyelinating, and neurodegenerative condition of the optic nerve, which might induce permanent vision loss. Currently, there are no effective therapies for this disorder. We have developed an experimental model of primary ON in rats through a single microinjection of 4.5 µg of bacterial lipopolysaccharide (LPS) into the optic nerve. Since melatonin acts as a pleiotropic therapeutic agent in various neurodegenerative diseases, we analyzed the effect of melatonin on LPS-induced ON. For this purpose, LPS or vehicle were injected into the optic nerve from adult male Wistar rats. One group of animals received a subcutaneous pellet of 20 mg melatonin at 24 hr before vehicle or LPS injection, and another group was submitted to a sham procedure. Melatonin completely prevented the decrease in visual evoked potentials (VEPs), and pupil light reflex (PLR), and preserved anterograde transport of cholera toxin ß-subunit from the retina to the superior colliculus. Moreover, melatonin prevented microglial reactivity (ED1-immunoreactivity, P < 0.01), astrocytosis (glial fibrillary acid protein-immunostaining, P < 0.05), demyelination (luxol fast blue staining, P < 0.01), and axon (toluidine blue staining, P < 0.01) and retinal ganglion cell (Brn3a-immunoreactivity, P < 0.01) loss, induced by LPS. Melatonin completely prevented the increase in nitric oxide synthase 2, cyclooxygenase-2 levels (Western blot) and TNFα levels, and partly prevented lipid peroxidation induced by experimental ON. When the pellet of melatonin was implanted at 4 days postinjection of LPS, it completely reversed the decrease in VEPs and PLR. These data suggest that melatonin could be a promising candidate for ON treatment.


Assuntos
Melatonina/farmacocinética , Fármacos Neuroprotetores/farmacologia , Neurite Óptica/prevenção & controle , Animais , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Neurite Óptica/induzido quimicamente , Neurite Óptica/metabolismo , Neurite Óptica/patologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
2.
PLoS One ; 9(7): e101829, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25004165

RESUMO

Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evan's blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats.


Assuntos
Catarata/prevenção & controle , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/prevenção & controle , Meio Ambiente , Retina/patologia , Animais , Barreira Hematorretiniana/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catarata/etiologia , Catarata/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Abrigo para Animais , Masculino , Ratos Wistar , Retina/metabolismo , Sinaptofisina/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
J Pineal Res ; 54(2): 179-89, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22946773

RESUMO

Diabetic retinopathy (DR) is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages and provokes significant retinal alterations. The aim of this work was to analyze the effect of melatonin on retinal changes induced by the moderate metabolic derangement. For this purpose, adult male Wistar rats received a control diet or 30% sucrose in the drinking water. Three weeks after this treatment, animals were injected with vehicle or streptozotocin (STZ, 25 mg/kg). One day or 3 wk after vehicle or STZ injection, animals were subcutaneously implanted with a pellet of melatonin. Fasting and postprandial glycemia, and glucose, and insulin tolerance tests were analyzed. At 12 wk of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in metabolic tests, as compared with control groups. Melatonin, which did not affect glucose metabolism in control or diabetic rats, prevented the decrease in the electroretinogram a-wave, b-wave, and oscillatory potential amplitude, and the increase in retinal lipid peroxidation, NOS activity, TNFα, Müller cells glial fibrillary acidic protein, and vascular endothelial growth factor levels. In addition, melatonin prevented the decrease in retinal catalase activity. These results indicate that melatonin protected the retina from the alterations observed in an experimental model of DR associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Melatonina/uso terapêutico , Animais , Catalase/metabolismo , Eletrorretinografia , Glucose/metabolismo , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar , Tiobarbitúricos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
J Neurochem ; 122(2): 392-403, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22536982

RESUMO

Light-induced damage is a widely used model to study retinal degeneration. We examined whether bacterial lipopolysaccharide (LPS) protects the retina against light-induced injury. One day before intense light exposure for 24 h, rats were intravitreally injected with LPS in one eye and vehicle in the contralateral eye. At several time points after light exposure, rats were subjected to electroretinography and histological analysis. Bax, Bcl-xL, p-Akt, and p-Stat3 levels were assessed by Western blotting, and retinal thiobarbituric acid reactive substances levels were measured as an index of lipid peroxidation. One group of animals received injections of dexamethasone, aminoguanidine (an inducible NOS inhibitor), 5-hydroxydecanoic acid (a mitochondrial K(+) /ATP channel blocker), or wortmannin [a phosphoinositide-3-kinase (PI3K) inhibitor] in order to analyze their effect on the protection induced by LPS. LPS afforded significant morphologic and functional protection in eyes exposed to intense light. Light damage induced an increase in mitochondrial Bax/cytoplasmic Bax ratio, and lipid peroxidation which were prevented by LPS. Dexamethasone and wortmannin (but not aminoguanidine or 5-hydroxydecanoic acid) prevented the effect of LPS. Moreover, wortmannin prevented the effect of LPS on p-Akt levels. These results indicate that LPS provides retinal protection against light-induced stress, probably through a PI3K/Akt-dependent mechanism.


Assuntos
Luz/efeitos adversos , Lipopolissacarídeos/farmacologia , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/patologia , Degeneração Retiniana/prevenção & controle , Androstadienos/farmacologia , Animais , Western Blotting , Dexametasona/farmacologia , Eletrorretinografia , Proteínas do Olho/metabolismo , Guanidinas/farmacologia , Injeções , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Lipopolissacarídeos/administração & dosagem , Masculino , Ratos , Ratos Wistar , Salmonella typhimurium/química , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/efeitos da radiação , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Corpo Vítreo , Wortmanina , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
5.
Am J Pathol ; 173(6): 1702-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19008374

RESUMO

Uveitis is a common ophthalmic disorder that can be induced in hamsters by a single intravitreal injection of bacterial lipopolysaccharide (LPS). To examine the therapeutic effects of melatonin on uveitis, a pellet of melatonin was implanted subcutaneously 2 hours before the intravitreal injection of either vehicle or LPS. Both 24 hours and 8 days after the injection, inflammatory responses were evaluated in terms of i) the integrity of the blood-ocular barrier, ii) clinical signs, iii) histopathological studies, and iv) retinal function. Melatonin reduced the leakage of proteins and cells in the anterior segment of LPS-injected eyes, decreased clinical signs such as dilation of the iris and conjunctival vessels, and flare in the anterior chamber, and protected the ultrastructure of the blood-ocular barrier. A remarkable disorganization of rod outer segment membranous disks was observed in animals injected with LPS, whereas no morphological changes in photoreceptor outer segments were observed in animals treated with melatonin. Furthermore, melatonin prevented a decrease in LPS-induced electroretinographic activity. In addition, melatonin significantly abrogated the LPS-induced increase in retinal nitric-oxide synthase activity, tumor necrosis factor-alpha, and nuclear factor kappaB p50 and p65 subunit levels. These results indicate that melatonin prevents the clinical, biochemical, histological, ultrastructural, and functional consequences of experimental uveitis, likely through a nuclear factor kappaB-dependent mechanism, and support the use of melatonin as a new therapeutic strategy for the treatment of uveitis.


Assuntos
Melatonina/uso terapêutico , Uveíte/tratamento farmacológico , Animais , Barreira Hematorretiniana/anatomia & histologia , Barreira Hematorretiniana/metabolismo , Cricetinae , Cricetulus , Modelos Animais de Doenças , Eletrorretinografia , Olho/anatomia & histologia , Olho/imunologia , Olho/patologia , Humanos , Implantes Experimentais , Lipopolissacarídeos/imunologia , Masculino , Mesocricetus , Uveíte/induzido quimicamente , Uveíte/imunologia , Uveíte/patologia
6.
Biochem Pharmacol ; 75(4): 857-65, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18078872

RESUMO

Nucleoside transporters (NTs) are essential for the uptake of therapeutic nucleoside analogs, broadly used in cancer treatment. The mechanisms responsible for NT regulation are largely unknown. IL-4 is a pro-survival signal for chronic lymphocytic leukemia (CLL) cells and has been shown to confer resistance to nucleoside analogs. The aim of this study was to investigate whether IL-4 is able to modulate the expression and function of the human equilibrative NT1 (hENT1) in primary cultures of CLL cells and, consequently, to affect cytotoxicity induced by therapeutic nucleosides analogs. We found that treatment with IL-4 (20 ng/ml for 24 h) increased mRNA hENT1 expression in CLL cells without affecting that of normal B cells. Given that the enhanced mRNA levels of hENT1 in CLL cells did not result in increased transport activity, we examined the possibility that hENT1 induced by IL-4 may require post-translational modifications to become active. We found that the acute stimulation of PKC in IL-4-treated CLL cells by short-term incubation with PMA significantly increased hENT1 transport activity and favoured fludarabine-induced apoptosis. By contrast, and in line with previous reports, IL-4 plus PMA protected CLL cells from a variety of cytotoxic agents. Our findings indicate that the combined treatment with IL-4 and PMA enhances hENT1 activity and specifically sensitizes CLL cells to undergo apoptosis induced by fludarabine.


Assuntos
Apoptose/efeitos dos fármacos , Linfócitos B , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Interleucina-4/farmacologia , Leucemia Linfocítica Crônica de Células B , Acetato de Tetradecanoilforbol/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular Tumoral , Humanos , Interleucina-4/fisiologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Vidarabina/análogos & derivados , Vidarabina/farmacocinética , Vidarabina/farmacologia
7.
Neurochem Int ; 51(6-7): 424-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17543420

RESUMO

There is a growing body of evidence on the role of nitric oxide (NO) in retinal physiology. Recently, interest has developed in the functional role of an alternative redox form of NO, namely nitroxyl (HNO/NO(-)), because it is formed by a number of diverse biochemical reactions. The aim of the present report was to comparatively analyze the effect of HNO and NO on the retinal nitridergic pathway in the golden hamster. For this purpose, sodium trioxodinitrate (Angeli's salt) and diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA/NO) were used as HNO and NO releasers, respectively. Angeli's salt and DEA/NO significantly decreased nitric oxide synthase activity. In addition, Angeli's salt (but not DEA/NO) significantly decreased l-arginine uptake. DEA/NO significantly increased cGMP accumulation at low micromolar concentrations, while Angeli's salt affected this parameter with a threshold concentration of 200muM. Although Angeli's salt and DEA/NO significantly diminished reduced glutathione and protein thiol levels in a similar way, DEA/NO was significantly more effective than AS in increasing S-nitrosothiol levels. None of these compounds increased retinal lipid peroxidation. These results suggest that HNO could regulate the hamster retinal nitridergic pathway by acting through a mechanism that only partly overlaps with that involved in NO response.


Assuntos
Neurônios Nitrérgicos/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Retina/metabolismo , Vias Visuais/metabolismo , Animais , Antioxidantes/farmacologia , Arginina/metabolismo , Cricetinae , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Mesocricetus , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/metabolismo , Nitritos/farmacologia , Óxidos de Nitrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Compostos de Amônio Quaternário/farmacologia , Retina/efeitos dos fármacos , S-Nitrosotióis/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vias Visuais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA