Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 58(10): 5224-5238, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273104

RESUMO

Accumulated beta-amyloid (Aß) in the brain is the hallmark of Alzheimer's disease (AD). Despite Aß accumulation is known to trigger cellular dysfunctions and learning and memory damage, the detailed molecular mechanism remains elusive. Recent studies have shown that the onset of memory impairment and learning damage in the AD animal is different, suggesting that the underlying mechanism of the development of memory impairment and learning damage may not be the same. In the current study, with the use of Aß42 transgenic flies as models, we found that Aß induces memory damage and learning impairment via differential molecular signaling pathways. In early stage, Aß activates both Ras and PI3K to regulate Rac1 activity, which affects mostly on memory performance. In later stage, PI3K-Akt is strongly activated by Aß, which leads to learning damage. Moreover, reduced Akt, but not Rac1, activity promotes cell viability in the Aß42 transgenic flies, indicating that Akt and Rac1 exhibit differential roles in Aß regulating toxicity. Taken together, different molecular and cellular mechanisms are involved in Aß-induced learning damage and memory decline; thus, caution should be taken during the development of therapeutic intervention in the future.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Proteínas de Drosophila/metabolismo , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas rac de Ligação ao GTP/genética
2.
Neurobiol Learn Mem ; 150: 13-19, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477608

RESUMO

Glucose catabolism, also known as glycolysis, is important for energy generation and involves a sequence of enzymatic reactions that convert a glucose molecule into two pyruvate molecules. The glycolysis process generates adenosine triphosphate as a byproduct. In this study, we investigated whether glycolysis plays a role in maintaining neuronal functions in the Drosophila mushroom bodies (MBs), which are generally accepted to be an olfactory learning and memory center. Our data showed that individual knockdown of glycolytic enzymes in the MBs, including hexokinase (HexA), phosphofructokinase (Pfk), or pyruvate kinase (PyK), disrupts olfactory memory. Whole-mount brain immunostaining indicated that pyruvate kinase is strongly expressed in the MB αß, α'ß', and γ neuron subsets. We conclude that HexA, Pfk, and PyK are required in each MB neuron subset for olfactory memory formation. Our data therefore indicates that glucose catabolism in the MBs is important for olfactory memory formation in Drosophila.


Assuntos
Glicólise/fisiologia , Memória/fisiologia , Corpos Pedunculados/metabolismo , Percepção Olfatória/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Neurônios/fisiologia , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Olfato/fisiologia
3.
Nat Cell Biol ; 16(1): 55-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316671

RESUMO

The mixed lineage kinase domain-like protein (MLKL) has recently been identified as a key RIP3 (receptor interacting protein 3) downstream component of tumour necrosis factor (TNF)-induced necroptosis. MLKL is phosphorylated by RIP3 and is recruited to the necrosome through its interaction with RIP3. However, it is still unknown how MLKL mediates TNF-induced necroptosis. Here, we report that MLKL forms a homotrimer through its amino-terminal coiled-coil domain and locates to the cell plasma membrane during TNF-induced necroptosis. By generating different MLKL mutants, we demonstrated that the plasma membrane localization of trimerized MLKL is critical for mediating necroptosis. Importantly, we found that the membrane localization of MLKL is essential for Ca(2+) influx, which is an early event of TNF-induced necroptosis. Furthermore, we identified that TRPM7 (transient receptor potential melastatin related 7) is a MLKL downstream target for the mediation of Ca(2+) influx and TNF-induced necroptosis. Hence, our study reveals a crucial mechanism of MLKL-mediated TNF-induced necroptosis.


Assuntos
Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Necrose/patologia , Proteínas Quinases/metabolismo , Multimerização Proteica , Fator de Necrose Tumoral alfa/farmacologia , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Células HEK293 , Células HT29 , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Células Jurkat , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Quinases/química , Multimerização Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Canais de Cátion TRPM/metabolismo
4.
Cell Rep ; 3(5): 1414-21, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23643538

RESUMO

Rapid endocytosis, which takes only a few seconds, is widely observed in secretory cells. Although it is more efficient in recycling vesicles than in slow clathrin-mediated endocytosis, its underlying mechanism, thought to be clathrin independent, is largely unclear. Here, we report that cleavage of three SNARE proteins essential for exocytosis, including synaptobrevin, SNAP-25, and syntaxin, inhibited rapid endocytosis at the calyx of Held nerve terminal, suggesting the involvement of the three SNARE proteins in rapid endocytosis. These SNARE proteins were also involved in slow endocytosis. In addition, SNAP-25 and syntaxin facilitated vesicle mobilization to the readily releasable pool, most likely via their roles in endocytosis and/or exocytosis. We conclude that both rapid and slow endocytosis share the involvement of SNARE proteins. The dual role of three SNARE proteins in exo- and endocytosis suggests that SNARE proteins may be molecular substrates contributing to the exocytosis-endocytosis coupling, which maintains exocytosis in secretory cells.


Assuntos
Endocitose/fisiologia , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Sinapses/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Endocitose/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Feminino , Masculino , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas R-SNARE/química , Ratos , Ratos Wistar , Proteína 25 Associada a Sinaptossoma/antagonistas & inibidores , Toxina Tetânica/farmacologia
5.
J Neurosci ; 33(21): 9169-75, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699527

RESUMO

SNAP25, an essential component of the soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) complex that mediates exocytosis, is not considered to play a role in endocytosis, which couples to exocytosis by retrieving a similar amount of exocytosed vesicles. By knocking down SNAP25 and imaging slow endocytosis at a conventional synapse, the rat cultured hippocampal synapse, we found that SNAP25 is involved in slow, clathrin-dependent endocytosis. With similar techniques, we found that not only SNAP25, but also synaptobrevin is involved in slow endocytosis. These results provide the first evidence showing the dual role of SNAP25 and synaptobrevin in both exocytosis and slow endocytosis at conventional synapses. Such a dual role may contribute to mediate the coupling between exocytosis and clathrin-dependent endocytosis at conventional synapses, a mechanism critical for the maintenance of synaptic transmission and the normal structure of nerve terminals.


Assuntos
Endocitose/fisiologia , Hipocampo/citologia , Neurônios/citologia , Proteínas R-SNARE/metabolismo , Sinapses/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Animais Recém-Nascidos , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Células PC12 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
6.
Proc Natl Acad Sci U S A ; 109(41): 16743-8, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23019586

RESUMO

Current understanding of amyloid-ß (Aß) metabolism and toxicity provides an extensive list of potential targets for developing drugs for treating Alzheimer's disease. We took two independent approaches, including synaptic-plasticity-based analysis and behavioral screening of synthetic compounds, for identifying single compounds that are capable of rescuing the Aß-induced memory loss in both transgenic fruit fly and transgenic mouse models. Two clinically available drugs and three synthetic compounds not only showed positive effects in behavioral tests but also antagonized the Aß oligomers-induced activation of the epidermal growth factor receptor (EGFR). Such surprising converging outcomes from two parallel approaches lead us to conclude that EGFR is a preferred target for treating Aß-induced memory loss.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Receptores ErbB/antagonistas & inibidores , Transtornos da Memória/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Peptídeos beta-Amiloides/genética , Animais , Animais Geneticamente Modificados , Western Blotting , Células COS , Chlorocebus aethiops , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Gefitinibe , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Memantina/farmacologia , Memória/efeitos dos fármacos , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteínas Quinases/química , Quinazolinas/farmacologia
7.
J Biol Chem ; 283(27): 19066-76, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18463098

RESUMO

The amyloid-beta42 (Abeta42) peptide has been suggested to play a causative role in Alzheimer disease (AD). Neprilysin (NEP) is one of the rate-limiting Abeta-degrading enzymes, and its enhancement ameliorates extracellular amyloid pathology, synaptic dysfunction, and memory defects in mouse models of Abeta amyloidosis. In addition to the extracellular Abeta, intraneuronal Abeta42 may contribute to AD pathogenesis. However, the protective effects of neuronal NEP expression on intraneuronal Abeta42 accumulation and neurodegeneration remain elusive. In contrast, sustained NEP activation may be detrimental because NEP can degrade many physiological peptides, but its consequences in the brain are not fully understood. Using transgenic Drosophila expressing human NEP and Abeta42, we demonstrated that NEP efficiently suppressed the formation of intraneuronal Abeta42 deposits and Abeta42-induced neuron loss. However, neuronal NEP overexpression reduced cAMP-responsive element-binding protein-mediated transcription, caused age-dependent axon degeneration, and shortened the life span of the flies. Interestingly, the mRNA levels of endogenous fly NEP genes and phosphoramidon-sensitive NEP activity declined during aging in fly brains, as observed in mammals. Taken together, these data suggest both the protective and detrimental effects of chronically high NEP activity in the brain. Down-regulation of NEP activity in aging brains may be an evolutionarily conserved phenomenon, which could predispose humans to developing late-onset AD.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Axônios/enzimologia , Regulação da Expressão Gênica , Neprilisina/biossíntese , Envelhecimento/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Amiloidose/enzimologia , Amiloidose/genética , Animais , Animais Geneticamente Modificados , Evolução Biológica , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Ativação Enzimática/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Neprilisina/genética
8.
J Neurosci ; 25(50): 11693-709, 2005 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-16354928

RESUMO

A transmembrane aspartyl protease termed beta-site APP cleavage enzyme 1 (BACE1) that cleaves the amyloid-beta precursor protein (APP), which is abundant in neurons, is required for the generation of amyloid-beta (Abeta) peptides implicated in the pathogenesis of Alzheimer's disease (AD). We now demonstrate that BACE1, enriched in neurons of the CNS, is a major determinant that predisposes the brain to Abeta amyloidogenesis. The physiologically high levels of BACE1 activity coupled with low levels of BACE2 and alpha-secretase anti-amyloidogenic activities in neurons is a major contributor to the accumulation of Abeta in the CNS, whereas other organs are spared. Significantly, deletion of BACE1 in APPswe;PS1DeltaE9 mice prevents both Abeta deposition and age-associated cognitive abnormalities that occur in this model of Abeta amyloidosis. Moreover, Abeta deposits are sensitive to BACE1 dosage and can be efficiently cleared from the CNS when BACE1 is silenced. However, BACE1 null mice manifest alterations in hippocampal synaptic plasticity as well as in performance on tests of cognition and emotion. Importantly, memory deficits but not emotional alterations in BACE1(-/-) mice are prevented by coexpressing APPswe;PS1DeltaE9 transgenes, indicating that other potential substrates of BACE1 may affect neural circuits related to emotion. Our results establish BACE1 and APP processing pathways as critical for cognitive, emotional, and synaptic functions, and future studies should be alert to potential mechanism-based side effects that may occur with BACE1 inhibitors designed to ameliorate Abeta amyloidosis in AD.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Encéfalo/patologia , Cognição/fisiologia , Emoções/fisiologia , Endopeptidases/fisiologia , Transmissão Sináptica/fisiologia , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases , Endopeptidases/deficiência , Endopeptidases/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional/fisiologia
9.
Neurobiol Dis ; 17(1): 54-61, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15350965

RESUMO

The mechanism that underlies the progressive degeneration of the dopaminergic neurons in Parkinson's disease (PD) is not clear. The Zn(2+) level in the substantia nigra of Parkinson's patients is increased. However, it is unknown whether Zn(2+) has a role in the degeneration of dopaminergic neurons. This study identifies an interaction between dopamine and Zn(2+) that induces cell death. When PC12 cells were pretreated with Zn(2+) before dopamine treatment, dopamine and Zn(2+) synergistically increased cell death, while Zn(2+) and H(2)O(2) had only additive effects on cell death. The synergistic effect appeared to be caused by increased apoptosis rather than necrosis. The synergistic effect was specific for Zn(2+). The synergistic effect was inhibited by thiol antioxidants but was not significantly affected by calcium channel blockers. There is a similar synergistic effect when dopamine and Zn(2+) were coinfused into the striatum, resulting in striatal dopamine content depletion in vivo. Thus, both dopamine oxidation and Zn(2+) are possibly linked to the degeneration of dopaminergic neurons.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Doença de Parkinson/etiologia , Zinco/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Masculino , Células PC12 , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA