Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Transplant ; 33: 9636897241237049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483119

RESUMO

Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neuroinflamatórias , Talidomida/análogos & derivados , Ratos , Animais , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
2.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311053

RESUMO

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Assuntos
Androstenos , Neoplasias Encefálicas , Glioblastoma , Esteroide 17-alfa-Hidroxilase , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Desacetilase 6 de Histona/genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Estresse Oxidativo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Transl Stroke Res ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37783839

RESUMO

Blood-brain barrier (BBB) disruption is a prominent pathophysiological mechanism in stroke. Transplantation of mesenchymal stem cells (MSCs) preserves BBB integrity following ischemic stroke. Fibroblast growth factor 21 (FGF21) has been shown to be a potent neuroprotective agent that reduces neuroinflammation and protects against BBB leakage. In this study, we assessed the effects of transplantation of MSCs overexpressing FGF21 (MSCs-FGF21) on ischemia-induced neurological deficits and BBB breakdown. MSCs-FGF21 was injected into the rat brain via the intracerebroventricular route 24 h after middle cerebral artery occlusion (MCAO) surgery. The behavioral performance was assessed using modified neurological severity scores and Y-maze tests. BBB disruption was measured using Evans blue staining, IgG extravasation, and brain water content. The levels of tight junction proteins, aquaporin 4, and neuroinflammatory markers were analyzed by western blotting and immunohistochemistry. The activity of matrix metalloproteinase-9 (MMP-9) was determined using gelatin zymography. At day-5 after MCAO surgery, intraventricular injection of MSCs-FGF21 was found to significantly mitigate the neurological deficits and BBB disruption. The MCAO-induced loss of tight junction proteins, including ZO-1, occludin, and claudin-5, and upregulation of the edema inducer, aquaporin 4, were also remarkably inhibited. In addition, brain infarct volume, pro-inflammatory protein expression, and MMP-9 activation were effectively suppressed. These MCAO-induced changes were only marginally improved by treatment with MSCs-mCherry, which did not overexpress FGF21. Overexpression of FGF21 dramatically improved the therapeutic efficacy of MSCs in treating ischemic stroke. Given its multiple benefits and long therapeutic window, MSC-FGF21 therapy may be a promising treatment strategy for ischemic stroke.

4.
Diagnostics (Basel) ; 13(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761311

RESUMO

Postoperative adhesive arachnoiditis is an inflammatory response of the spinal leptomeninges that occurs after surgery and results in scar formation in the avascular nature of the arachnoid layer. Clinical manifestations of postoperative adhesive arachnoiditis include pain, sensory deficits, motor dysfunction, reflex abnormalities, and bladder or bowel impairment. In magnetic resonance imaging scans, signs of postoperative adhesive arachnoiditis can vary; however, some indicators can assist surgeons in locating the lesion accurately and, thus, in planning effective surgical interventions. This paper reports the case of a 37-year-old man with postoperative adhesive arachnoiditis after two surgeries for Chiari I malformation. This case illustrates the progressive development of the "delta cord sign", which refers to the formation of a thick arachnoid band causing the spinal cord to adopt a triangular shape in the axial view. This phenomenon is accompanied by the sequential occurrence of syringomyelia. During intraoperative examination, we identified the presence of the delta cord sign, which had been formed by an arachnoid scar that tethered the dorsal spinal cord to the dura. This discovery enabled us to precisely pinpoint the location of the arachnoid scar and thus provided us with guidance that enabled us to avoid unnecessary exploration of unaffected structures during the procedure. Other localization signs were also reviewed.

5.
Pharmaceutics ; 14(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35631536

RESUMO

(1) Background: An important concomitant of stroke is neuroinflammation. Pomalidomide, a clinically available immunomodulatory imide drug (IMiD) used in cancer therapy, lowers TNF-α generation and thus has potent anti-inflammatory actions. Well-tolerated analogs may provide a stroke treatment and allow evaluation of the role of neuroinflammation in the ischemic brain. (2) Methods: Two novel pomalidomide derivatives, 3,6'-dithiopomalidomide (3,6'-DP) and 1,6'-dithiopomalidomide (1,6'-DP), were evaluated alongside pomalidomide in a rat middle cerebral artery occlusion (MCAo) stroke model, and their anti-inflammatory actions were characterized. (3) Results: Post-MCAo administration of all drugs lowered pro-inflammatory TNF-α and IL1-ß levels, and reduced stroke-induced postural asymmetry and infarct size. Whereas 3,6'- and 1,6'-DP, like pomalidomide, potently bound to cereblon in cellular studies, 3,6'-DP did not lower Ikaros, Aiolos or SALL4 levels-critical intermediates mediating the anticancer/teratogenic actions of pomalidomide and IMiDs. 3,6'-DP and 1,6'-DP lacked activity in mammalian chromosome aberration, AMES and hERG channel assays -critical FDA regulatory tests. Finally, 3,6'- and 1,6'-DP mitigated inflammation across rat primary dopaminergic neuron and microglia mixed cultures challenged with α-synuclein and mouse LPS-challenged RAW 264.7 cells. (4) Conclusion: Neuroinflammation mediated via TNF-α plays a key role in stroke outcome, and 3,6'-DP and 1,6'-DP may prove valuable as stroke therapies and thus warrant further preclinical development.

6.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576209

RESUMO

Ischemic stroke is the leading cause of mortality and long-term disability worldwide. Disruption of the blood-brain barrier (BBB) is a prominent pathophysiological mechanism, responsible for a series of subsequent inflammatory cascades that exacerbate the damage to brain tissue. However, the benefit of recanalization is limited in most patients because of the narrow therapeutic time window. Recently, mesenchymal stem cells (MSCs) have been assessed as excellent candidates for cell-based therapy in cerebral ischemia, including neuroinflammatory alleviation, angiogenesis and neurogenesis promotion through their paracrine actions. In addition, accumulating evidence on how MSC therapy preserves BBB integrity after stroke may open up novel therapeutic targets for treating cerebrovascular diseases. In this review, we focus on the molecular mechanisms of MSC-based therapy in the ischemia-induced prevention of BBB compromise. Currently, therapeutic effects of MSCs for stroke are primarily based on the fundamental pathogenesis of BBB breakdown, such as attenuating leukocyte infiltration, matrix metalloproteinase (MMP) regulation, antioxidant, anti-inflammation, stabilizing morphology and crosstalk between cellular components of the BBB. We also discuss prospective studies to improve the effectiveness of MSC therapy through enhanced migration into defined brain regions of stem cells. Targeted therapy is a promising new direction and is being prioritized for extensive research.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Humanos , Metaloproteinases da Matriz/metabolismo
7.
Life (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35054433

RESUMO

Recent studies have shown the evocation of lateral spread response (LSR) due to the compression of the facial nerve in hemifacial spasm (HFS). Intraoperative monitoring (IOM) of LSR could help locate neurovascular conflicts and confirm adequate micro-vascular decompression (MVD) while treatment of hemifacial spasm (HFS). However, studies on early LSR loss before decompression in HFS surgery are sparse, indicating the need to understand various perceptions on it. Therefore, we retrospectively analyzed 50 adult HFS patients who underwent MVD during the period of September 2018-June 2021. We employed IOM combining traditional LSR (tLSR) and dual LSR (dLSR). One patient was excluded owing to the lack of LSR induction throughout the surgery, while 49 were divided into groups A (n = 14) and B (n = 35), designated as with or without early LSR loss groups, respectively, and offending vessels were analyzed. The mean age of group A patients was significantly younger (47.8 ± 8.6) than that of group B (53.9 ± 10.6) (p = 0.0393). The significant predominating offending vessel in group A was the anterior inferior cerebellar artery (AICA, 78.57%). However, group B included those with AICA (28.57%), posterior inferior cerebellar artery (PICA, 22.86%), vertebral artery (VA) involved (25.71%), and combined AICA and PICA (22.86%). Group B exhibited poorer clinical outcomes with more complications. Conclusively, early LSR loss might occur in the younger population, possibly due to the AICA offending vessel. The compression severity of offending vessels may determine the occurrence of early LSR loss.

8.
Int J Biol Sci ; 16(16): 3184-3199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162824

RESUMO

Background: Histone deacetylase (HDAC) inhibitors have emerged as a new class of anti-tumor agents for various types of tumors, including glioblastoma. Methods and results: We found that a novel HDAC inhibitor, MPT0B291, significantly reduced the cell viability and increased cell death of human and rat glioma cell lines, but not in normal astrocytes. We also demonstrated that MPT0B291 suppressed proliferation by inducing G1 phase cell cycle arrest and increased apoptosis in human and rat glioma cell lines by flow cytometry and immunocytochemistry. We further investigated the anti-tumor effects of MPT0B291 in xenograft (mouse) and allograft (rat) models. The IVIS200 images and histological analysis indicated MPT0B291 (25 mg/kg, p. o.) reduced tumor volume. Mechanistically, MPT0B291 increased phosphorylation and acetylation/activation of p53 and increased mRNA levels of the apoptosis related genes PUMA, Bax, and Apaf1 as well as increased protein level of PUMA, Apaf1 in C6 cell line. The expression of cell cycle related gene p21 was also increased and Cdk2, Cdk4 were decreased by MPT0B291. Conclusion: Our study highlights the anti-tumor efficacy of a novel compound MPT0B291 on glioma growth.


Assuntos
Antineoplásicos/farmacologia , Glioma/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Astrócitos , Morte Celular , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Masculino , Camundongos , Camundongos Nus , Fosforilação , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516998

RESUMO

Mesenchymal stem cells (MSCs) are emerging as an attractive approach for restorative medicine in central nervous system (CNS) diseases and injuries, such as traumatic brain injury (TBI), due to their relatively easy derivation and therapeutic effect following transplantation. However, the long-term survival of the grafted cells and therapeutic efficacy need improvement. Here, we review the recent application of MSCs in TBI treatment in preclinical models. We discuss the genetic modification approaches designed to enhance the therapeutic potency of MSCs for TBI treatment by improving their survival after transplantation, enhancing their homing abilities and overexpressing neuroprotective and neuroregenerative factors. We highlight the latest preclinical studies that have used genetically modified MSCs for TBI treatment. The recent developments in MSCs' biology and potential TBI therapeutic targets may sufficiently improve the genetic modification strategies for MSCs, potentially bringing effective MSC-based therapies for TBI treatment in humans.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Terapia Baseada em Transplante de Células e Tecidos , Gerenciamento Clínico , Suscetibilidade a Doenças , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Terapia Genética , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Neurogênese
10.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326191

RESUMO

BACKGROUND: Stroke is one of the leading causes of death and disability worldwide and places a heavy burden on the economy in our society. Current treatments, such as the use of thrombolytic agents, are often limited by a narrow therapeutic time window. However, the regeneration of the brain after damage is still active days, even weeks, after stroke occurs, which might provide a second window for treatment. Emodin, a traditional Chinese medicinal herb widely used to treat acute hepatitis, has been reported to possess antioxidative capabilities and protective effects against myocardial ischemia/reperfusion injury. However, the underlying mechanisms and neuroprotective functions of Emodin in a rat middle cerebral artery occlusion (MCAO) model of ischemic stroke remain unknown. This study investigates neuroprotective effects of Emodin in ischemia both in vitro and in vivo. METHODS: PC12 cells were exposed to oxygen-glucose deprivation to simulate hypoxic injury, and the involved signaling pathways and results of Emodin treatment were evaluated. The therapeutic effects of Emodin in ischemia animals were further investigated. RESULTS: Emodin reduced infarct volume and cell death following focal cerebral ischemia injury. Emodin treatment restored PC12 cell viability and reduced reactive oxygen species (ROS) production and glutamate release under conditions of ischemia/hypoxia. Emodin increased Bcl-2 and glutamate transporter-1 (GLT-l) expression but suppressed activated-caspase 3 levels through activating the extracellular signal-regulated kinase (ERK)-1/2 signaling pathway. CONCLUSION: Emodin induced Bcl-2 and GLT-1 expression to inhibit neuronal apoptosis and ROS generation while reducing glutamate toxicity via the ERK-1/2 signaling pathway. Furthermore, Emodin alleviated nerve cell injury following ischemia/reperfusion in a rat MCAO model. Emodin has neuroprotective effects against ischemia/reperfusion injury both in vitro and in vivo, which may be through activating the ERK-1/2 signaling pathway.


Assuntos
Emodina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Animais , Biomarcadores , Sobrevivência Celular , Suscetibilidade a Doenças , Hipóxia/metabolismo , Imuno-Histoquímica , Células PC12 , Ratos , Traumatismo por Reperfusão/tratamento farmacológico
11.
World Neurosurg ; 138: e634-e641, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32173550

RESUMO

OBJECTIVE: The interlaminar fusion combination involving C1-C2 screwing fixation is one of the most effective techniques for atlantoaxial dislocation or subluxation, and the bone graft is usually stabilized by wiring constructs. However, some adverse events were reported during the insertion of sublaminar wiring, such as accidentally damaging the spinal cord or dura. Thus we used the miniplate to stabilize the harvest bone graft on the C1-C2 laminar, which led to a shorter operation time and prevented spinal canal violation. This study investigated the safety and efficacy of the novel surgical technique, namely miniplate-augmented interlaminar fusion. METHODS: We retrospectively reviewed 43 patients who underwent posterior atlantoaxial fusion with the miniplate-augmented iliac crest autograft at our institute. Complications related to surgery were recorded and calculated. After operation, patients were followed up through routine radiography to examine whether the fusion of the atlantoaxial segment was achieved. Success of fusion was defined as follows: 1) the presence of bone bridging between the bone graft and both the atlas and axis; and 2) the absence of movement of the atlantoaxial spinous process on flexion-extension radiography, which meant that the variation of length measured in 2 views, respectively, was <1 mm. The first time when radiography showed successful fusion after surgery was termed as fusion time and was recorded individually. In addition, overall fusion rates and mean fusion times were analyzed. RESULTS: Of 43 patients, long-term follow-up data were available for 31 patients, whereas the remaining 12 patients had dropped out (mean follow-up duration, 24.91 months; range, 6-72 months). Among 31 patients, 22 (70.96%) were women and 9 (29.03%) were men. The mean age was 63.33 years. Regarding the etiology, atlantoaxial dislocations or subluxations were caused due to degeneration, rheumatoid arthritis, odontoid fracture, trauma, and os odontoideum in 14 (45%), 3 (10%), 5 (16%), 8 (26%), and 1 (3%) patient(s), respectively. Successful fusion was achieved in 30 (96.77%) patients, with a mean fusion time of 6.23 months, whereas only 1 (3.23%) patient did not meet the fusion criteria. No complications related to the miniplate occurred. We noted vertebral artery rupture not requiring blood transfusion in 1 patient, aspiration pneumonia in 1 patient, urinary tract infection in 1 patient, anemia requiring transfusion in 1 patient, and leg dysesthesia in 1 patient. No neurologic deficit was found. CONCLUSIONS: Miniplate-augmented interlaminar fusion with C1-C2 screwing resulted in excellent fusion rates with a considerably low probability of complications. Hence this novel technique for bone graft fixation with atlantoaxial screwing has a good efficacy and safety and can serve as an alternative for bone graft fixation during C1-C2 fusion.


Assuntos
Vértebras Cervicais/cirurgia , Fusão Vertebral/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Articulação Atlantoaxial/anormalidades , Articulação Atlantoaxial/diagnóstico por imagem , Articulação Atlantoaxial/cirurgia , Parafusos Ósseos , Transplante Ósseo , Vértebras Cervicais/diagnóstico por imagem , Anormalidades Congênitas , Feminino , Seguimentos , Humanos , Ílio/transplante , Fixadores Internos , Luxações Articulares/cirurgia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Resultado do Tratamento
12.
J Neurotrauma ; 37(1): 14-26, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31298621

RESUMO

Traumatic brain injury (TBI) is a progressive and complex pathological condition that results in multiple adverse consequences, including impaired learning and memory. Transplantation of mesenchymal stem cells (MSCs) has produced limited benefits in experimental TBI models. Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator that has neuroprotective effects, promotes remyelination, enhances angiogenesis, and elongates astrocytic processes. In this study, MSCs were genetically engineered to overexpress FGF21 in order to improve their efficacy in TBI. MSCs overexpressing FGF21 (MSC-FGF21) were transplanted to mouse brain by intracerebroventricular injection 24 h after TBI was induced by controlled cortical impact (CCI). Hippocampus-dependent spatial learning and memory, assessed by the Morris water maze test, was markedly decreased 3-4 weeks after TBI, a deficit that was robustly recovered by treatment with MSC-FGF21, but not MSC-mCherry control. Hippocampus-independent learning and memory, assessed by the novel object recognition test, was also impaired; these effects were blocked by treatment with both MSC-FGF21 and MSC-mCherry control. FGF21 protein levels in the ipsilateral hippocampus were drastically reduced 4 weeks post-TBI, a loss that was restored by treatment with MSC-FGF21, but not MSC-mCherry. MSC-FGF21 treatment also partially restored TBI-induced deficits in neurogenesis and maturation of immature hippocampal neurons, whereas MSC-mCherry was less effective. Finally, MSC-FGF21 treatment also normalized TBI-induced impairments in dendritic arborization of hippocampal neurons. Taken together, the results indicate that MSC-FGF21 treatment significantly improved TBI-induced spatial memory deficits, impaired hippocampal neurogenesis, and abnormal dendritic morphology. Future clinical investigations using MSC-FGF21 to improve post-TBI outcomes are warranted.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Neurogênese , Recuperação de Função Fisiológica , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia
13.
Exp Neurol ; 324: 113135, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778663

RESUMO

Traumatic brain injury (TBI) is one of the most common causes of death and disability worldwide. We investigated whether inhibition of p53 using pifithrin (PFT)-α or PFT-µ provides neuroprotective effects via p53 transcriptional dependent or -independent mechanisms, respectively. Sprague Dawley rats were subjected to controlled cortical impact TBI followed by the administration of PFTα or PFT-µ (2 mg/kg, i.v.) at 5 h after TBI. Brain contusion volume, as well as sensory and motor functions were evaluated at 24 h after TBI. TBI-induced impairments were mitigated by both PFT-α and PFT-µ. Fluoro-Jade C staining was used to label degenerating neurons within the TBI-induced cortical contusion region that, together with Annexin V positive neurons, were reduced by PFT-µ. Double immunofluorescence staining similarly demonstrated that PFT-µ significantly increased HO-1 positive neurons and mRNA expression in the cortical contusion region as well as decreased numbers of 4-hydroxynonenal (4HNE)-positive cells. Levels of mRNA encoding for p53, autophagy, mitophagy, anti-oxidant, anti-inflammatory related genes and proteins were measured by RT-qPCR and immunohistochemical staining, respectively. PFT-α, but not PFT-µ, significantly lowered p53 mRNA expression. Both PFT-α and PFT-µ lowered TBI-induced pro-inflammatory cytokines (IL-1ß and IL-6) mRNA levels as well as TBI-induced autophagic marker localization (LC3 and p62). Finally, treatment with PFT-µ mitigated TBI-induced declines in mRNA levels of PINK-1 and SOD2. Our data suggest that both PFT-µ and PFT-α provide neuroprotective actions through regulation of oxidative stress, neuroinflammation, autophagy, and mitophagy mechanisms, and that PFT-µ, in particular, holds promise as a TBI treatment strategy.


Assuntos
Autofagia/efeitos dos fármacos , Benzotiazóis/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Encefalite/tratamento farmacológico , Mitofagia/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Sulfonamidas/uso terapêutico , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Antioxidantes/metabolismo , Comportamento Animal , Contusão Encefálica/tratamento farmacológico , Contusão Encefálica/patologia , Contusão Encefálica/psicologia , Lesões Encefálicas Traumáticas/psicologia , Citocinas/metabolismo , Encefalite/patologia , Heme Oxigenase (Desciclizante)/biossíntese , Masculino , Ratos , Ratos Sprague-Dawley , Tolueno/uso terapêutico
14.
J Vis Exp ; (153)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31814625

RESUMO

Stem cell-based therapies for brain injuries, such as traumatic brain injury (TBI), are a promising approach for clinical trials. However, technical hurdles such as invasive cell delivery and tracking with low transplantation efficiency remain challenges in translational stem-based therapy. This article describes an emerging technique for stem cell labeling and tracking based on the labeling of the mesenchymal stem cells (MSCs) with superparamagnetic iron oxide (SPIO) nanoparticles, as well as intranasal delivery of the labeled MSCs. These nanoparticles are fluorescein isothiocyanate (FITC)-embedded and safe to label the MSCs, which are subsequently delivered to the brains of TBI-induced mice by the intranasal route. They are then tracked non-invasively in vivo by real-time magnetic resonance imaging (MRI). Important advantages of this technique that combines SPIO for cell labeling and intranasal delivery include (1) non-invasive, in vivo MSC tracking after delivery for long tracking periods, (2) the possibility of multiple dosing regimens due to the non-invasive route of MSC delivery, and (3) possible applications to humans, owing to the safety of SPIO, non-invasive nature of the cell-tracking method by MRI, and route of administration.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Rastreamento de Células/métodos , Nanopartículas de Magnetita , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Lesões Encefálicas Traumáticas/terapia , Modelos Animais de Doenças , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Int J Mol Sci ; 20(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142002

RESUMO

Mesenchymal stem cells (MSCs) are emerging as a potential therapeutic intervention for brain injury due to their neuroprotective effects and safe profile. However, the homing ability of MSCs to injury sites still needs to be improved. Fibroblast Growth Factor 21 (FGF21) was recently reported to enhance cells migration in different cells type. In this study, we investigated whether MSCs that overexpressing FGF21 (MSC-FGF21) could exhibit enhanced homing efficacy in brain injury. We used novel Molday IONEverGreen™ (MIEG) as cell labeling probe that enables a non-invasive, high-sensitive and real-time MRI tracking. Using a mouse model of traumatic brain injury (TBI), MIEG labeled MSCs were transplanted into the contralateral lateral ventricle followed by real-time MRI tracking. FGF21 retained MSC abilities of proliferation and morphology. MSC-FGF21 showed significantly greater migration in transwell assay compared to control MSC. MIEG labeling showed no effects on MSCs' viability, proliferation and differentiation. Magnetic resonance imaging (MRI) revealed that FGF21 significantly enhances the homing of MSC toward injury site. Histological analysis further confirmed the MRI findings. Taken together, these results show that FGF21 overexpression and MIEG labeling of MSC enhances their homing abilities and enables non-invasive real time tracking of the transplanted cells, provides a promising approach for MSC based therapy and tracking in TBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Movimento Celular , Fatores de Crescimento de Fibroblastos/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Animais , Células Cultivadas , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Cell Transplant ; 28(4): 439-450, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31094216

RESUMO

Stroke is a leading cause of death and severe disability worldwide. After cerebral ischemia, inflammation plays a central role in the development of permanent neurological damage. Reactive oxygen species (ROS) are involved in the mechanism of post-ischemic inflammation. The activation of several inflammatory enzymes produces ROS, which subsequently suppress mitochondrial activity, leading to further tissue damage. Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent. Prior cellular studies demonstrate that POM can mitigate oxidative stress and lower levels of pro-inflammatory cytokines, particularly TNF-α, which plays a prominent role in ischemic stroke-induced brain damage and functional deficits. To evaluate the potential value of POM in cerebral ischemia, POM was initially administered to transgenic mice chronically over-expressing TNF-α surfactant protein (SP)-C promoter (SP-C/TNF-α mice) to assess whether systemically administered drug could lower systemic TNF-α level. POM significantly lowered serum levels of TNF-α and IL-5. Pharmacokinetic studies were then undertaken in mice to evaluate brain POM levels following systemic drug administration. POM possessed a brain/plasma concentration ratio of 0.71. Finally, rats were subjected to transient middle cerebral artery occlusion (MCAo) for 60 min, and subsequently treated with POM 30 min thereafter to evaluate action on cerebral ischemia. POM reduced the cerebral infarct volume in MCAo-challenged rats and improved motor activity, as evaluated by the elevated body swing test. POM's neuroprotective actions on ischemic injury represent a potential therapeutic approach for ischemic brain damage and related disorders, and warrant further evaluation.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Talidomida/análogos & derivados , Inibidores da Angiogênese/farmacologia , Animais , Masculino , Camundongos , Ratos , Talidomida/farmacologia , Talidomida/uso terapêutico
17.
Artigo em Inglês | MEDLINE | ID: mdl-30416531

RESUMO

Oxidative stress is an important pathological mechanism in various liver diseases. Polygonum multiflorum Thunb. (PM) can be used for the treatment of diseases associated with aging, hyperlipidemia, and oxidative stress in traditional Chinese medicine. In this study, we examined the hepatoprotective effects of the ethanolic extract of PM (PME) in in vitro and in vivo models. The PME induced expression of antioxidant-response-element- (ARE-) related genes in HepG2 cells showed a dose-dependent manner. Pretreatment of HepG2 cell with PME suppressed H2O2- and acetaminophen- (APAP-) induced cellular reactive oxygen species (ROS) generation and cytotoxicity. In APAP-induced mouse liver injury, pretreatment with PME also showed ability to increase the survival rate and reduce the severity of liver injury. Treatment with PME attenuated bile duct ligation-induced extrahepatic cholestatic liver injury and further increased multidrug resistance protein 4 (MRP4) and reduced organic anion-transporting polypeptide (OATP) expression. Furthermore, increased nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2) was observed after treatment with PME in both in vivo models. In conclusion, the current study showed the hepatoprotective activity of PME by regulating the redox state in liver injury through Nrf2 activation and controlling hepatic bile acid homeostasis in obstructive cholestasis, through bile acid transporter expression modulation.

18.
Int J Neuropsychopharmacol ; 21(10): 949-961, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29905798

RESUMO

Background: Traumatic brain injury is known to impact dopamine-mediated reward pathways, but the underlying mechanisms have not been fully established. Methods: Nicotine-induced conditional place preference was used to study rats exposed to a 6-psi fluid percussion injury with and without prior exposure to nicotine. Preference was quantified as a score defined as (C1 - C2) / (C1 + C2), where C1 is time in the nicotine-paired compartment and C2 is time in the saline-paired compartment. Subsequent fast-scan cyclic voltammetry was used to analyze the impact of nicotine infusion on dopamine release in the shell portion of the nucleus accumbens. To further determine the influence of brain injury on nicotine withdrawal, nicotine infusion was administered to the rats after fluid percussion injury. The effects of fluid percussion injury on conditional place preference after prior exposure to nicotine and abstinence or withdrawal from nicotine were also assessed. Results: After traumatic brain injury, dopamine release was reduced in the nucleus accumbens shell, and nicotine-induced conditional place preference preference was significantly impaired. Preference scores of control, sham-injured, and fluid percussion injury groups were 0.1627±0.04204, 0.1515±0.03806, and -0.001300±0.04286, respectively. Nicotine-induced conditional place preference was also seen in animals after nicotine pretreatment, with a conditional place preference score of 0.07805±0.02838. Nicotine preexposure substantially increased tonic dopamine release in sham-injured animals, but it did not change phasic release; nicotine exposure after fluid percussion injury enhanced phasic release, though not to the same levels seen in sham-injured rats. Conditioned preference was related not only to phasic dopamine release (r=0.8110) but also to the difference between tonic and phasic dopamine levels (r=0.9521). Conclusions: Traumatic brain injury suppresses dopamine release from the shell portion of the nucleus accumbens, which in turn significantly alters reward-seeking behavior. These results have important implications for tobacco and drug use after traumatic brain injury.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Traumatismos Craniocerebrais/metabolismo , Traumatismos Craniocerebrais/psicologia , Dopamina/metabolismo , Nicotina/farmacologia , Núcleo Accumbens/metabolismo , Animais , Masculino , Microinjeções , Ratos , Síndrome de Abstinência a Substâncias/psicologia
19.
Int J Mol Sci ; 19(4)2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29641447

RESUMO

In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development.


Assuntos
Antiparkinsonianos/uso terapêutico , Incretinas/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Antiparkinsonianos/administração & dosagem , Incretinas/administração & dosagem , Locomoção , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/etiologia , Ratos , Ratos Sprague-Dawley
20.
Mol Oncol ; 12(5): 756-771, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603594

RESUMO

Glioblastoma multiforme (GBM) is a highly malignant type of brain tumor found in humans. GBM cells reproduce quickly, and the median survival time for patients after therapy is approximately 1 year with a high relapse rate. Current therapies and diagnostic tools for GBM are limited; therefore, we searched for a more favorable therapeutic target or marker protein for both therapy and diagnosis. We used mass spectrometry (MS) analysis to identify GBM-associated marker proteins from human plasma and GBM cell cultures. Additional plasma and 52 brain tissues obtained from patients with gliomas were used to validate the association rate of serum amyloid A1 (SAA1) in different grades of gliomas and its distribution in tumors. Microarray database analysis further validated the coefficient of SAA1 levels in gliomas. The cellular mechanisms of SAA1 in GBM proliferation and infiltration were investigated in vitro. We analyzed the correlation between SAA1 and patients' medication requirement to demonstrate the clinical effects of SAA1 in GBM. SAA1 was identified from MS analysis, and its level was revealed to be correlated with the disease grade, clinical severity, and survival rate of patients with gliomas. In vitro cultures, including GBM cells and normal astrocytes, revealed that SAA1 promotes cell migration and invasion through integrin αVß3 to activate the Erk signaling pathway. Magnetic resonance imaging and tumor region-specific microarray analysis identified a correlation between SAA1 and GBM cell infiltration in patients. In summary, our results demonstrate that SAA1 in combination with integrin αV and ß3 can serve as an indicator of high glioblastoma risk. We also identified the cellular mechanisms of SAA1 contributing to GBM progression, which can serve as the basis for future GBM therapy.


Assuntos
Movimento Celular , Progressão da Doença , Glioblastoma/metabolismo , Glioblastoma/patologia , Integrina alfaVbeta3/metabolismo , Proteína Amiloide A Sérica/metabolismo , Astrócitos/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Feminino , Glioblastoma/sangue , Glioblastoma/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA