Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834958

RESUMO

Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, paclitaxel (PTX) represents the first-line therapy for TNBC; however it presents a hydrophobic behavior and produces severe adverse effects. The aim of this work is to improve the therapeutic index of PTX through the design and characterization of novel nanomicellar polymeric formulations composed of a biocompatible copolymer Soluplus® (S), surface-decorated with glucose (GS), and co-loaded either with histamine (HA, 5 mg/mL) and/or PTX (4 mg/mL). Their micellar size, evaluated by dynamic light scattering, showed a hydrodynamic diameter between 70 and 90 nm for loaded nanoformulations with a unimodal size distribution. Cytotoxicity and apoptosis assays were performed to assess their efficacy in vitro in human MDA-MB-231 and murine 4T1 TNBC cells rendering optimal antitumor efficacy in both cell lines for the nanoformulations with both drugs. In a model of TNBC developed in BALB/c mice with 4T1 cells, we found that all loaded micellar systems reduced tumor volume and that both HA and HA-PTX-loaded SG micelles reduced tumor weight and neovascularization compared with the empty micelles. We conclude that HA-PTX co-loaded micelles in addition to HA-loaded formulations present promising potential as nano-drug delivery systems for cancer chemotherapy.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Paclitaxel , Histamina , Micelas , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Polietilenoglicóis/química , Polímeros , Portadores de Fármacos/química , Camundongos Endogâmicos BALB C
2.
Hypertens Res ; 44(7): 791-802, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33612826

RESUMO

ß-Adrenergic blockers are no longer recommended as first-line therapy due to the reduced cardioprotection of traditional ß-blockers compared with other antihypertensive drugs. It is unknown whether third-generation ß-blockers share the limitations of traditional ß-blockers. The aim of the present study was to compare the effects of nebivolol or atenolol on central and peripheral systolic blood pressure (SBP) and its variability and target organ damage (TOD) in N-nitro-L-arginine methyl ester (L-NAME) hypertensive rats. Male Wistar rats were treated with L-NAME for 8 weeks together with oral administration of nebivolol 30 mg/kg (n = 8), atenolol 90 mg/kg (n = 8), or vehicle (n = 8). The control group was composed of vehicle-treated Wistar rats. SBP and its variability, as well as echocardiographic parameters, were assessed during the last 2 weeks of treatment. Tissue levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and transforming growth factor ß (TGF-ß), and histopathological parameters were evaluated in the left ventricle and aorta. Nebivolol had a greater ability than atenolol to decrease central SBP and mid-term and short-term blood pressure variability (BPV) in L-NAME rats. Echocardiographic analysis showed that nebivolol was more effective than atenolol on E/A wave ratio normalization. Compared with atenolol treatment, nebivolol had a greater protective effect on different TOD markers, inducing a decrease in collagen deposition and a reduction in the proinflammatory cytokines IL-6 and TNF-α in the left ventricle and aorta. Our findings suggest that the adverse hemodynamic profile and the reduced cardiovascular protection reported with traditional ß-blockers must not be carried forward to third-generation ß-blockers.


Assuntos
Atenolol , Hipertensão , Nebivolol , Animais , Anti-Hipertensivos/farmacologia , Atenolol/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Hipertensão/tratamento farmacológico , Masculino , Nebivolol/farmacologia , Ratos , Ratos Wistar , Resultado do Tratamento
3.
J Hypertens ; 38(3): 536-545, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028517

RESUMO

BACKGROUND: ß-blockers are no longer considered as first-line antihypertensive drugs due to their lower cardioprotection. METHOD: Considering the differences in the pharmacological properties of ß-blockers, the present work compared the effects of third-generation ß-blockers - carvedilol and nebivolol - with a first-line agent - amlodipine - on hemodynamic parameters, including short-term blood pressure variability (BPV), and their ability to prevent target organ damage in spontaneously hypertensive rats (SHR). SHR rats were orally treated with carvedilol, nebivolol, atenolol, amlodipine or vehicle for 8 weeks. Wistar Kyoto rats treated with vehicle were used as normotensive group. Echocardiographic evaluation, BP, and short-term BPV measurements were performed. Left ventricle and thoracic aorta were removed for histological evaluations and to assess the expression of transforming growth factor ß (TGF-ß), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). RESULTS: Carvedilol, nebivolol or amlodipine induced a greater reduction of carotid BP, short-term BPV and echocardiography parameters than atenolol in SHR rats. Carvedilol, nebivolol and amlodipine were more effective than atenolol in the prevention of cardiac hypertrophy, and cardiac and aortic collagen deposit. Carvedilol and nebivolol, but not atenolol, reduced the expressions of fibrotic and inflammatory biomarkers - TGF-ß, TNF-α and IL-6 - in SHR rats to a similar extent to that of amlodipine. CONCLUSION: Chronic treatment with carvedilol or nebivolol attenuates carotid BP and short-term BPV, and reduces target organ damage in SHR to a greater extent than atenolol. Our findings suggest that the lower cardiovascular protection of nonvasodilating ß-blockers, as atenolol, in hypertension must not be translated to third-generation ß-blockers.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Anlodipino/farmacologia , Anti-Hipertensivos/farmacologia , Atenolol/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Antagonistas Adrenérgicos beta/efeitos adversos , Anlodipino/efeitos adversos , Animais , Aorta/efeitos dos fármacos , Atenolol/efeitos adversos , Citocinas/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR
4.
Contrast Media Mol Imaging ; 2019: 4087895, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178670

RESUMO

D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) is a Food and Drug Administration (FDA) approved biomaterial that can form nanosized micelles in aqueous solution. TPGS micelles stand as an interesting system to perform drug delivery as they can carry lipophilic drugs and overcome P glycoprotein efflux as well. Therefore, TPGS micelles combined with other copolymers have been reported in many cancer research studies as a carrier for therapeutic drugs. Their ability to reach tumoral tissue can also be exploited to develop imaging agents with diagnostic application. A radiolabeling method with 99mTc for TPGS nanosized micelles and their biodistribution in a healthy animal model as well as their pharmacokinetics and radiolabeling stability in vivo was previously reported. The aim of this work was to evaluate the performance of this radioactive probe as a diagnostic imaging agent compared to routinely available SPECT radiopharmaceutical, 99mTc-sestamibi. A small field of view gamma camera was used for scintigraphy studies using radiolabeled TPGS micelles in two animal models of breast cancer: syngeneic 4T1 murine cell line (injected in BALB/c mice) and chemically NMU-induced (Sprague-Dawley rats). Ex vivo radioactivity accumulation in organs of interest was measured by a solid scintillation counter, and a semiquantitative analysis was performed over acquired images as well. Results showed an absence of tumoral visualization in 4T1 model for both radioactive probes by gamma camera imaging. On the contrary, NMU-induced tumors had a clear tumor visualization by scintigraphy. A higher tumor/background ratio and more homogeneous uptake were found for radiolabeled TPGS micelles compared to 99mTc-sestamibi. In conclusion, 99mTc-radiolabeled TPGS micelles might be a potential SPECT imaging probe for diagnostic purposes.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Micelas , Nanoestruturas , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Vitamina E , Animais , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Feminino , Humanos , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Metilnitrosoureia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Compostos Radiofarmacêuticos/farmacocinética , Ratos Sprague-Dawley , Tecnécio Tc 99m Sestamibi/farmacocinética , Distribuição Tecidual , Vitamina E/farmacocinética
5.
Mater Sci Eng C Mater Biol Appl ; 95: 328-341, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573256

RESUMO

Nanotechnology has recently emerged as a promising tool in biomedicine research. An important branch of nanotechnology is drug delivery and drug targeting using a wide range of biomaterials with promising potential applications in cancer research. The aim of this review is to provide an overview of the evolution of nanotechnology in cancer therapy, exemplified by a myriad of applications in drug delivery, tumor targeting and reversal of ATP-binding cassette drug transporter-mediated multidrug resistance (MDR) in cancer cells by the biomaterials used in nanoformulations. Special attention will be focused on liver cancer, especially, on hepatocellular carcinoma, which is among the malignancies with the poorest prognosis due to its extremely "difficult-to-treat" nature related to its high recurrence rate and MDR phenotype.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos
6.
Toxicol Appl Pharmacol ; 357: 106-114, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031011

RESUMO

Doxorubicin (DOX) hydrochloride is a powerful anthracycline antibiotic used for the treatment of various types of malignancies, particularly ovarian and metastatic breast cancer. However, DOX presents severe side effects, such as hepatotoxicity, nephrotoxicity, dose-limiting myelosuppression, brain damage and cardiotoxicity. A liposomal formulation, Doxil®, was approved by the FDA, which has managed to reduce the number of cardiac events in patients with metastatic breast cancer. However, in comparison to free DOX, Doxil® has not shown significant improvements regarding survival. We have previously designed DOX-loaded mixed micelles (MMDOX) composed of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and Tetronic® T1107. To assess the potential toxic effects of this novel formulation, in this work the zebrafish (Danio rerio) model was used to evaluate its in vivo toxicity and teratogenicity. This study evaluated and compared the effects of DOX exposure from different formulations (free DOX, MMDOX and Doxil®) on the swimming activity, morphological alterations, cardiac rhythm, lethality rate and DOX biodistribution. MMDOX showed lower lethal effects, morphological alterations and neurotoxic effects than the free drug. This study shows the potential of the MMDOX to be an effective DOX-delivery system because it could reduce the side effects.


Assuntos
Doxorrubicina/farmacocinética , Doxorrubicina/toxicidade , Micelas , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Larva/efeitos dos fármacos , Atividade Motora , Distribuição Tecidual , Peixe-Zebra
7.
Biomed Pharmacother ; 95: 894-903, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28903185

RESUMO

Doxorubicin (DOX) is used as a "first-line" antineoplastic drug in ovarian and metastatic breast cancer. However, serious side effects, such as cardiotoxicity have been reported after DOX intravenous administration. Hence, we investigated different micelle-former biomaterials, as Soluplus®, Pluronic F127, Tetronic T1107 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) to develop a potential mixed micellar nanocarrier for DOX delivery. Since DOX hydrochloride is a poor candidate to be encapsulated inside the hydrophobic core of the mixed micelles, we assayed a hydrophobic complex between DOX and sodium deoxycholate (NaDC) as an excellent candidate to be encapsulated within polymeric micelles. The combination of T1107:TPGS (1:3, weight ratio) demonstrated the best physicochemical properties together with a high DL capacity (6.43% w/v). Particularly, DOX in vitro release was higher at acidic tumour microenvironment pH value (5.5) than at physiological counterpart (7.4). The hydrodynamic diameter of the DOX/NaDC-loaded mixed micellar system was 10.7nm (PDI=0.239). The in vitro cytotoxicity of the mixed micellar formulation resulted significantly (p<0.05) higher than Doxil® against ovarian (SKOV-3) and triple-negative breast cancer cells (MDA-MB- 231). Further, the in vitro cellular uptake assays demonstrated a significant increment (p<0.05) of the DOX intracellular content for the mixed micelles versus Doxil® for both, SKOV-3 (at 2, 4 and 6h of incubation) and MDA-MB-231 (at 4h of incubation) cells. These findings suggest that T1107:TPGS (1:3) mixed micelles could be employed as a potential nanotechnological platform for drug delivery of DOX.


Assuntos
Neoplasias da Mama/patologia , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Micelas , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/ultraestrutura , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Neoplasias Ovarianas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Eletricidade Estática
9.
J Am Soc Hypertens ; 11(4): 227-240, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28595719

RESUMO

The aim of the study was to compare the effects of chronic oral treatment with carvedilol or amlodipine on blood pressure, blood pressure variability and target organ damage in N-nitro-l-arginine methyl ester (L-NAME) hypertensive rats. Wistar rats were treated with L-NAME administered in the drinking water for 8 weeks together with oral administration of carvedilol 30 mg/kg (n = 6), amlodipine 10 mg/kg (n = 6), or vehicle (n = 6). At the end of the treatment, echocardiographic evaluation, blood pressure, and short-term variability measurements were performed. Left ventricular and thoracic aortas were removed to assess activity of metalloproteinase 2 and 9 and expression levels of transforming growth factor ß, tumor necrosis factor α, and interleukin 6. Histological samples were prepared from both tissues. Carvedilol and amlodipine induced a comparable reduction of systolic and mean arterial pressure and its short-term variability in L-NAME rats. The expression of transforming growth factor ß, tumor necrosis factor α, and interleukin 6 decreased in both organs after carvedilol or amlodipine treatment and the activity of metalloproteinase was reduced in aortic tissue. Treatment with carvedilol or amlodipine completely prevented left ventricular collagen deposition and morphometric alterations in aorta. Oral chronic treatment with carvedilol or amlodipine significantly attenuates blood pressure variability and reduces target organ damage and biomarkers of tissue fibrosis and inflammation in L-NAME hypertensive rats.


Assuntos
Anti-Hipertensivos/farmacologia , Aorta/efeitos dos fármacos , Aorta/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hipertensão/tratamento farmacológico , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Animais , Anti-Hipertensivos/uso terapêutico , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Determinação da Pressão Arterial , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Carvedilol , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Hipertensão/induzido quimicamente , Interleucina-6/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NG-Nitroarginina Metil Éster/toxicidade , Propanolaminas/farmacologia , Propanolaminas/uso terapêutico , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Int J Pharm ; 526(1-2): 474-495, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28501439

RESUMO

In recent years, the nanotechnology has offered researchers the opportunity to solve the problems caused by the vehicle of the standard and first formulation of paclitaxel (Taxol®), while maximizing the proven antineoplastic activity of the drug against many solid tumors. Hence, different types of nanocarriers have been employed to improve the efficacy, safety, physicochemical properties and pharmacokinetic/pharmacodynamic profile of this drug. To date, paclitaxel is the unique drug that is marketed in three different nanoplatforms for its parenteral delivery: polymeric nanoparticles (Abraxane®), liposomes (Lipusu®), and polymeric micelles (Genexol®, Nanoxel® and Paclical®). Indeed, a fourth nanocarrier might be available soon, because phase III studies of Opaxio™, a polymeric-conjugated, are near completion. Furthermore, other several nanoformulations are currently in various stages of clinical trials. Therefore, it is only through the critical analysis of clinical evidence from these studies that we can get a more concrete idea of what has been achieved with pharmaceutical nanotechnology so far. This review attempts to summarize current information available regarding the clinical status and the physicochemical characteristic of different nanocarriers for paclitaxel delivery in cancer therapy. We present an overview of the preclinical and clinical data of these systems including their pharmacokinetics, dose and administration, adverse events and clinical efficacy.


Assuntos
Nanopartículas/química , Paclitaxel/administração & dosagem , Ensaios Clínicos como Assunto , Humanos , Micelas , Nanotecnologia , Paclitaxel/farmacocinética , Polímeros
11.
Eur J Pharm Biopharm ; 114: 305-316, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28192249

RESUMO

Breast cancer represents the top cancer among women, accounting 521.000 deaths per year. Development of targeted nanomedicines to breast cancer tissues represents a milestone to reduce chemotherapy side effects. Taking advantage of the over-expression of glucose (Glu) membrane transporters in breast cancer cells, we aim to expand the potential of a paclitaxel (PTX)-loaded mixed micellar formulation based on polyvinyl caprolactam-polyvinylacetate-polyethylene glycol graft copolymer (Soluplus®) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) by its surface decoration with Glu moieties. The glycopolymer (Soluplus(Glu)) was obtained by microwave-assisted ring opening reaction of δ-gluconolactone initiated by Soluplus®. The glycosylation was confirmed by 1H NMR and by agglutination assays employing Concanavalin A. The hydrodynamic diameter of Soluplus(Glu) micelles was characterized by dynamic light scattering (100.3±3.8nm) as well as the critical micellar concentration value (0.0151% w/v). Then, a mixed micelle formulation employing Soluplus®, Soluplus(Glu) and TPGS (3:1:1wt ratio) loaded with PTX (4mg/mL) was developed as a multifunctional nanocarrier. Its in vitro anticancer performance in MCF-7 (1.6-fold) and MDA-MB-231 (14.1-fold) was significantly enhanced (p<0.05) versus the unique commercially available micellar-based PTX-nanoformulation (Genexol®). Furthermore, the in vitro PTX cellular uptake assays revealed that the drug intracellular/cell content was significantly (p<0.05) higher for the Glu-containing mixed micelles versus Genexol® after 6h of incubation with MCF-7 (30.5-fold) and MDA-MB-231 (5-fold). Overall, results confirmed the potential of our Glu-decorated mixed colloidal formulation as an intelligent nanocarrier for PTX-targeted breast cancer chemotherapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Composição de Medicamentos , Excipientes , Feminino , Humanos , Micelas , Nanomedicina , Paclitaxel/química , Paclitaxel/farmacologia , Polietilenoglicóis/química , Polivinil/química
12.
Eur J Pharm Biopharm ; 113: 211-228, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28087380

RESUMO

During the past few decades, polymeric micelles have raised special attention as novel nano-sized drug delivery systems for optimizing the treatment and diagnosis of numerous diseases. These nanocarriers exhibit several in vitro and in vivo advantages as well as increased stability and solubility to hydrophobic drugs. An interesting approach for optimizing these properties and overcoming some of their disadvantages is the combination of two or more polymers in order to assemble polymeric mixed micelles. This review article gives an overview on the current state of the art of several mixed micellar formulations as nanocarriers for drugs and imaging probes, evaluating their ongoing status (preclinical or clinical stage), with special emphasis on type of copolymers, physicochemical properties, in vivo progress achieved so far and toxicity profiles. Besides, the present article presents relevant research outcomes about polymeric mixed micelles as better drug delivery systems, when compared to polymeric pristine micelles. The reported data clearly illustrates the promise of these nanovehicles reaching clinical stages in the near future.


Assuntos
Micelas , Nanomedicina , Polímeros/química , Portadores de Fármacos
13.
Drug Discov Today ; 22(2): 270-281, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27890669

RESUMO

Doxorubicin (DOX) is considered one of the most effective chemotherapeutic agents, used as a first-line drug in numerous types of cancer. Nevertheless, it exhibits serious adverse effects, such as lethal cardiotoxicity and dose-limiting myelosuppression. In this review, we focus on the description and the clinical benefits of different DOX-loaded nanotechnological platforms, not only those commercially available but also the ones that are currently in clinical phases, such as liposomes, polymeric nanoparticles, polymer-drug conjugates, polymeric micelles and ligand-based DOX-loaded nanoformulations. Although some DOX-based nanoproducts are currently being used in the clinical field, it is clear that further research is necessary to achieve improvements in cancer therapeutics.


Assuntos
Antineoplásicos , Doxorrubicina , Nanoestruturas , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Doxorrubicina/efeitos adversos , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Humanos , Nanoestruturas/efeitos adversos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Nanotecnologia , Neoplasias/tratamento farmacológico
14.
Colloids Surf B Biointerfaces ; 146: 624-31, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27429296

RESUMO

Treatment of retinoblastoma, the most common primary ocular malignancy in children, has greatly improved over the last decade. Still, new devices for chemotherapy are needed to achieve better tumor control. The aim of this project was to develop an ocular drug delivery system for topotecan (TPT) loaded in biocompatible hydrogels of poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) block copolymers (PCL-PEG-PCL) for sustained TPT release in the vitreous humor. Hydrogels were prepared from TPT and synthesized PCL-PEG-PCL copolymers. Rheological properties and in vitro and in vivo TPT release were studied. Hydrogel cytotoxicity was evaluated in retinoblastoma cells as a surrogate for efficacy and TPT vitreous pharmacokinetics and systemic as well as ocular toxicity were evaluated in rabbits. The pseudoplastic behavior of the hydrogels makes them suitable for intraocular administration. In vitro release profiles showed a sustained release of TPT from PCL-PEG-PCL up to 7days and drug loading did not affect the release pattern. Blank hydrogels did not affect retinoblastoma cell viability but 0.4% (w/w) TPT-loaded hydrogel was highly cytotoxic for at least 7days. After intravitreal injection, TPT vitreous concentrations were sustained above the pharmacologically active concentration. One month after injection, animals with blank or TPT-loaded hydrogels showed no systemic toxicity or retinal impairment on fundus examination, electroretinographic, and histopathological assessments. These novel TPT-hydrogels can deliver sustained concentrations of active drug into the vitreous with excellent biocompatibility in vivo and pronounced cytotoxic activity in retinoblastoma cells and may become an additional strategy for intraocular retinoblastoma treatment.


Assuntos
Hidrogéis/química , Topotecan/administração & dosagem , Topotecan/química , Animais , Linhagem Celular Tumoral , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/métodos , Humanos , Poliésteres/química , Polietilenoglicóis/química , Coelhos , Retina/metabolismo , Retinoblastoma/tratamento farmacológico , Topotecan/uso terapêutico
15.
J Nanosci Nanotechnol ; 16(1): 160-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27398441

RESUMO

Nanomedicines have become an attractive platform for the development of novel drug delivery systems in cancer chemotherapy. Polymeric nanoparticles (NPs) represent one of the best well-investigated nanosized carriers for delivery of antineoplastic compounds. The "Pegylation strategy" of drug delivery systems has been used in order to improve carrier biodistribution, however, some nanosized systems with PEG on their surface have exhibited poorly-cellular drug internalization. In this context, the purpose of the present study was to compare in vitro performance of two paclitaxel (PTX)-loaded NPs systems based on two biocompatible copolymers of alpha tocopheryl polyethylene glycol 1000 succinate-block-poly(ε-caprolactone) (TPGS-b-PCL) and methoxyPEG- block-poly(ε-caprolactone) (mPEG-b-PCL) in terms of citotoxicity and PTX cellular uptake. Fur- thermore, TPGS-b-PCL NPs were also copared with the commercially available PTX nano-sized formulation Abraxane®. Both TPGS-b-PCL and mPEG-b-PCL derivates were synthesized by ring opening polymerization of ε-caprolactone employing microwaved radiation. NPs were obtained by a solvent evaporation technique where the PTX content was determined by reverse-phase HPLC. The resulting NPs had an average size between 200 and 300 nm with a narrow size distribution. Also both NPs systems showed a spherical shape. The in vitro PTX release profile from the NPs was characterized employing the dialysis membrane method where all drug-loaded formulations showed a sustained and slow release of PTX. Finally, in vitro assays demonstrated that PTX-loaded TPGS- b-PCL exhibited a significant higher antitumor activity than PTX-loaded mPEG-b-PCL NPs and Abraxane® against an estrogen-dependent (MCF-7) and an estrogen independent (MDA-MB-231) breast cancer cells lines. Furthermore TPGS-b-PCL NPs showed a significant increase on PTX cellular uptake, for both breast cell lines, in comparison with mPEG-b-PCL NPs and Abraxane®. Overall findings confirmed that NPs based on TPGS-b-PCL as biomaterial demonstrated a better in vitro performance than NPs with PEG, representing an attractive alternative for the development of novel nanosized carriers for anticancer therapy.


Assuntos
Paclitaxel Ligado a Albumina , Citotoxinas , Nanopartículas/química , Neoplasias/tratamento farmacológico , Paclitaxel , Poliésteres , Vitamina E/análogos & derivados , Paclitaxel Ligado a Albumina/química , Paclitaxel Ligado a Albumina/farmacocinética , Paclitaxel Ligado a Albumina/farmacologia , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Feminino , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Vitamina E/química , Vitamina E/farmacocinética , Vitamina E/farmacologia
16.
Colloids Surf B Biointerfaces ; 140: 403-411, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26780253

RESUMO

The aim of this work was to develop mixed micelles based on two biocompatible copolymers of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus(®)) and D-α-tocopheryl polyethylene-glycol 1000 succinate (TPGS), to improve the aqueous solubility and the in vitro anti-tumor activity of paclitaxel (PTX). Pure and mixed nanomicelles were prepared by solvent evaporation method and characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Solubility of PTX was increased 60,000 and 38,000 times, when it was formulated in pure Soluplus(®) micelles and in mixed micelles (Soluplus(®):TPGS; 4:1 ratio), respectively. The in vitro PTX release profile from micellar systems was characterized employing the dialysis membrane method where all drug-loaded formulations showed a sustained and slow release of PTX. In vitro assays were conducted on human cancer cell lines including ovarian cancer cells SKOV-3, breast cancer cells MCF-7 and triple negative breast cancer cells MDA-MB-231. Cytotoxicity studies showed that mixed micelles exhibited better antitumor activity compared to PTX solution against the three cell lines. Furthermore mixed micelles showed a significant increase on PTX cellular uptake in comparison with pure Soluplus(®) micelles and free drug in all cell lines assayed. More important, blank mixed micelles have shown cytotoxic activity due to the ability of TPGS to induce apoptosis in cancer cells. This effect was associated with the expression levels of cleaved-PARP, an apoptosis-related protein. On the basis of these results, the mixed micelles developed in this study might be a potential nano-drug delivery system for cancer chemotherapy.


Assuntos
Micelas , Paclitaxel/farmacologia , Polietilenoglicóis/química , Polivinil/química , Vitamina E/análogos & derivados , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Immunoblotting , Células MCF-7 , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/química , Paclitaxel/farmacocinética , Poli(ADP-Ribose) Polimerases/metabolismo , Solubilidade , Vitamina E/química
17.
Colloids Surf B Biointerfaces ; 136: 1017-25, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26590894

RESUMO

Tuberculosis (TB) has been stated as "the greatest killer worldwide due to a single infectious agent" behind the human immunodeficiency virus. Standard short-term treatment includes the oral administration of a combination of "first-line" drugs. However, poor-patient compliance and adherence to the long-term treatments represent one of the mayor drawbacks of the TB therapy. An alternative to the oral route is the pulmonary delivery of anti-TB drugs for local or systemic administration. Nanotechnology offers an attractive platform to develop novel inhalable/respirable nanocarriers. The present investigation was focused on the encapsulation of rifampicin (RIF) (a "first-line" anti-TB drug) within nanopolymersomes (nanoPS) employing di- and tri-block poly(ethylene glycol) (PEG)-poly(ɛ-caprolactone) (PCL) based copolymers as biomaterials. The derivatives presented a number-average molecular weight between 12.2 KDa and 30.1 KDa and a hydrophobic/hydrophilic balance between 0.56 and 0.99. The nanoPS were able to enhance the apparent RIF aqueous solubility (up to 4.62 mg/mL) where the hydrodynamic diameters of the drug-loaded systems (1% w/v) were ranged between 65.8 nm and 94 nm at day 0 as determined by dynamic light scattering (DLS). Then, RIF-loaded systems demonstrated as excellent colloidal stability in aqueous media over 14 days with a spherical morphology as determined by transmission electron microscopy (TEM). Furthermore, RIF-loaded nano-sized PS promoted drug accumulation in macrophages (RAW 264.7) versus a drug solution representing promising results for a potential TB inhaled therapy.


Assuntos
Antituberculosos/administração & dosagem , Pulmão , Nanoestruturas/química , Rifampina/administração & dosagem , Animais , Antituberculosos/farmacocinética , Linhagem Celular , Portadores de Fármacos , Macrófagos/metabolismo , Camundongos , Rifampina/farmacocinética
18.
Colloids Surf B Biointerfaces ; 113: 43-50, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24060929

RESUMO

The purpose of this work was to develop Cremophor(®) EL-free nanoparticles (NPs) loaded with Paclitaxel (PTX) in order to improve the drug i.v. pharmacokinetic profile and to evaluate its activity against commercially available formulations such as Taxol(®) and Abraxane(®). PTX-loaded poly(ε-caprolactone)-alpha tocopheryl polyethylene glycol 1000 succinate (PCL-TPGS) NPs were prepared using three different techniques: (i) by nanoprecipitation (NPr-method), (ii) by emulsion-solvent evaporation homogenized with an Ultra-Turrax(®) (UT-method) and (iii) by emulsion-solvent evaporation homogenized with an ultrasonicator (US-method). The NPs prepared by US-method showed the smallest size and the highest drug content. The NPs exhibited a slow and continuous release of PTX. The in vitro anti-tumoral activity was assessed using two human breast cancer cell lines (MCF-7 and MDA-MB-231) with the WTS assay. Cytotoxicity studies with both cell lines showed that PTX-loaded PCL-TPGS NPs exhibited better anti-cancer activity compared to PTX solution and the commercial formulation Abraxane(®) at different concentrations. Importantly, in the case of triple negative MDA-MB-231 breast cancer cells, the IC50 value for PTX-loaded PCL-TPGS NPs was 7.8 times lower than Abraxane(®). Finally, in vivo studies demonstrated that PTX-loaded PCL-TPGS NPs exhibited longer systemic circulation time and slower plasma elimination rate than Taxol(®) and Abraxane(®). Therefore, the novel NPs investigated might be an alternative nanotechnological platform for PTX delivery system in cancer chemotherapy.


Assuntos
Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/farmacocinética , Poliésteres/química , Polímeros/química , Vitamina E/análogos & derivados , Paclitaxel Ligado a Albumina , Albuminas/química , Albuminas/farmacocinética , Albuminas/farmacologia , Animais , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Polietilenoglicóis/química , Ratos , Ratos Wistar , Vitamina E/química
19.
J Biomed Nanotechnol ; 9(6): 1076-87, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23858973

RESUMO

Inhalable nanocarriers that are uptaken by macrophages represent an appealing approach for the targeting of antibiotics to the tuberculosis reservoir. In the present work, we report on the development of rifampicin (RIF)-loaded nanoparticles and flower-like polymeric micelles surface-modified with hydrolyzed galatomannan (GalM-h), a polysaccharide of mannose and galactose, two sugars that are recognized by lectin-like receptors. Initially, pure or GalM-h-associated chitosan nanoparticles (NPs) were produced by ionotropic gelation. Despite the composition, NPs displayed positive zeta potential values between +18.0 and +24.5 mV and a size ranging between 263 and 340 nm. In addition, RIF payloads were approximately 1.0% w/w. To increase the encapsulation efficiency, a more complex nanocarrier based on poly(epsilon-caprolactone)-b-poly(ethylene-glycol)-b-poly(epsilon-caprolactone) flower-like polymeric micelles (PMs) coated with chitosan or GalM-h/chitosan were engineered. These polymeric micelles displayed a bimodal size distribution with a positive zeta potential between +6.7 and +8.1 mV. More importantly, the drug encapsulation capacity was increased 12.9-fold with respect to the NPs. An agglutination assay with concanavalin A confirmed the presence of GalM-h on the surface. Qualitative uptake studies by fluorescence microscopy revealed that GalM-h-modified systems were taken-up by RAW 264.7 murine macrophages. Finally, the intracellular/cell associated levels of RIF following the incubation of cells with free or encapsulated drug indicated that while chitosan hinders the uptake, GalM-h leads to a significant increase of the intracellular concentration.


Assuntos
Macrófagos/química , Macrófagos/metabolismo , Mananas/química , Mananas/farmacocinética , Terapia de Alvo Molecular/métodos , Nanocápsulas/química , Rifampina/administração & dosagem , Animais , Linhagem Celular , Galactose/análogos & derivados , Hidrólise , Teste de Materiais , Camundongos , Micelas , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Polímeros/química , Rifampina/química
20.
Nanomedicine (Lond) ; 8(2): 223-37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23173734

RESUMO

AIM: To investigate the intranasal administration of poly(ethylene oxide)-poly(propylene oxide) polymeric micelles loaded with high payloads of the first-line antiretroviral drug efavirenz for targeting to the CNS. METHODS & MATERIALS: The effect of micellar size and composition and drug payload was assessed, employing simple micelles made of a highly hydrophilic copolymer, poloxamer F127, loaded with 20 mg/ml drug and mixed micelles containing 75% of a poloxamine of intermediate hydrophobicity, T904, and 25% F127 loaded with 20 and 30 mg/ml drug. F127 confers high physical stability, while T904 substantially improves the encapsulation capacity of the micelles. RESULTS: The bioavailability of the drug in the CNS was increased fourfold and the relative exposure index (ratio between the area under the curve in the CNS and plasma) was increased fivefold with respect to the same system administered intravenously. CONCLUSION: These findings demonstrate the potential of this scalable and cost-viable strategy to address the HIV sanctuary in the CNS.


Assuntos
Benzoxazinas/administração & dosagem , Benzoxazinas/uso terapêutico , Infecções por HIV/tratamento farmacológico , Micelas , Administração Intranasal , Alcinos , Animais , Ciclopropanos , Masculino , Polietilenos/química , Polipropilenos/química , Ratos , Ratos Wistar , Inibidores da Transcriptase Reversa/administração & dosagem , Inibidores da Transcriptase Reversa/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA