Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047161

RESUMO

The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Descoberta de Drogas , Ferro
2.
Molecules ; 25(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182964

RESUMO

Tuberculosis is still an urgent global health problem, mainly due to the spread of multi-drug resistant M. tuberculosis strains, which lead to the need of new more efficient drugs. A strategy to overcome the problem of the resistance insurgence could be the polypharmacology approach, to develop single molecules that act on different targets. Polypharmacology could have features that make it an approach more effective than the classical polypharmacy, in which different drugs with high affinity for one target are taken together. Firstly, for a compound that has multiple targets, the probability of development of resistance should be considerably reduced. Moreover, such compounds should have higher efficacy, and could show synergic effects. Lastly, the use of a single molecule should be conceivably associated with a lower risk of side effects, and problems of drug-drug interaction. Indeed, the multitargeting approach for the development of novel antitubercular drugs have gained great interest in recent years. This review article aims to provide an overview of the most recent and promising multitargeting antitubercular drug candidates.


Assuntos
Antituberculosos/uso terapêutico , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/química , Desenho de Fármacos , Humanos , Mycobacterium tuberculosis/patogenicidade , Polifarmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
3.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766758

RESUMO

Nontuberculous mycobacteria (NTM) have recently emerged as important pathogens among cystic fibrosis (CF) patients worldwide. Mycobacterium abscessus is becoming the most worrisome NTM in this cohort of patients and recent findings clarified why this pathogen is so prone to this disease. M. abscessus drug therapy takes up to 2 years and its failure causes an accelerated lung function decline. The M. abscessus colonization of lung alveoli begins with smooth strains producing glycopeptidolipids and biofilm, whilst in the invasive infection, "rough" mutants are responsible for the production of trehalose dimycolate, and consequently, cording formation. Human-to-human M. abscessus transmission was demonstrated among geographically separated CF patients by whole-genome sequencing of clinical isolates worldwide. Using a M. abscessus infected CF zebrafish model, it was demonstrated that CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction seems to have a specific role in the immune control of M. abscessus infections only. This pathogen is also intrinsically resistant to many drugs, thanks to its physiology and to the acquisition of new mechanisms of drug resistance. Few new compounds or drug formulations active against M. abscessus are present in preclinical and clinical development, but recently alternative strategies have been investigated, such as phage therapy and the use of ß-lactamase inhibitors.


Assuntos
Doenças Transmissíveis Emergentes , Fibrose Cística , Farmacorresistência Bacteriana Múltipla/imunologia , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Alvéolos Pulmonares , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/patologia , Fibrose Cística/epidemiologia , Fibrose Cística/imunologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Modelos Animais de Doenças , Humanos , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium abscessus/imunologia , Mycobacterium abscessus/patogenicidade , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Peixe-Zebra
4.
PLoS One ; 11(11): e0167350, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898711

RESUMO

The greatest obstacle for the treatment of cystic fibrosis patients infected with the Burkholderia species is their intrinsic antibiotic resistance. For this reason, there is a need to develop new effective compounds. Glutamate racemase, an essential enzyme for the biosynthesis of the bacterial cell wall, is an excellent candidate target for the design of new antibacterial drugs. To this aim, we recombinantly produced and characterized glutamate racemase from Burkholderia cenocepacia J2315. From the screening of an in-house library of compounds, two Zn (II) and Mn (III) 1,3,5-triazapentadienate complexes were found to efficiently inhibit the glutamate racemase activity with IC50 values of 35.3 and 10.0 µM, respectively. Using multiple biochemical approaches, the metal complexes have been shown to affect the enzyme activity by binding to the enzyme-substrate complex and promoting the formation of an inhibited dimeric form of the enzyme. Our results corroborate the value of glutamate racemase as a good target for the development of novel inhibitors against Burkholderia.


Assuntos
Isomerases de Aminoácido/antagonistas & inibidores , Isomerases de Aminoácido/metabolismo , Burkholderia cenocepacia/enzimologia , Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/efeitos dos fármacos , Burkholderia cenocepacia/isolamento & purificação , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Cinética , Manganês/química , Testes de Sensibilidade Microbiana , Ligação Proteica , Estabilidade Proteica , Zinco/química
5.
Curr Med Chem ; 23(35): 4009-4026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27281295

RESUMO

Tuberculosis nowadays ranks as the second leading cause of death from an infectious disease worldwide. In the last twenty years, this disease has again started to spread mainly for the appearance of multi-drug resistant forms. Therefore, new targets are needed to address the growing emergence of bacterial resistance and for antitubercular drug development. Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis, because it serves as cofactor in many essential biological processes, including DNA biosynthesis and cellular respiration. Bacteria acquire iron chelating non-heme iron from the host using the siderophore mycobactins and carboxymycobactins and by the uptake of heme iron released by damaged red blood cells, through several acquisition systems. Drug discovery focused its efforts on the inhibition of MbtI and MbtA, which are are two enzymes involved in the mycobactin biosynthetic pathway. In particular, MbtI inhibitors have been studied in vitro, while MbtA inhibitors showed activity also in infected mice. Another class of compounds, MmpL3 inhibitors, showed antitubercular activity in vitro and in vivo, but their mechanism of action seems to be off-target. Some compounds inhibiting 4'-phosphopantetheinyl transferase were discovered but not tested on in vivo assays. The available data reported in this study based on inhibitors and gene deletion studies, suggest that targeting iron acquisition systems could be considered a promising antitubercular strategy. Due to their redundancy, the relative importance of each pathway for Mycobacterium tuberculosis survival has still to be determined. Thus, in vivo studies with new, potent and specific inhibitors are needed to highlight target selection.


Assuntos
Antituberculosos/uso terapêutico , Ferro/metabolismo , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Ligases/química , Ligases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Tuberculose/patologia
6.
PLoS One ; 5(11): e13892, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21085483

RESUMO

Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.


Assuntos
Asparaginase/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo Celular/fisiologia , Helicobacter pylori/enzimologia , Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/farmacologia , Animais , Asparaginase/genética , Asparaginase/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biocatálise/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Helicobacter pylori/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA