Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811035

RESUMO

Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.

2.
Nat Commun ; 15(1): 2711, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565864

RESUMO

Regulatory arrest peptides interact with specific residues on bacterial ribosomes and arrest their own translation. Here, we analyse over 30,000 bacterial genome sequences to identify additional Sec/YidC-related arrest peptides, followed by in vivo and in vitro analyses. We find that Sec/YidC-related arrest peptides show patchy, but widespread, phylogenetic distribution throughout the bacterial domain. Several of the identified peptides contain distinct conserved sequences near the C-termini, but are still able to efficiently stall bacterial ribosomes in vitro and in vivo. In addition, we identify many arrest peptides that share an R-A-P-P-like sequence, suggesting that this sequence might serve as a common evolutionary seed to overcome ribosomal structural differences across species.


Assuntos
Proteínas de Escherichia coli , Biossíntese de Proteínas , Filogenia , Peptídeos/química , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo
3.
Nat Commun ; 15(1): 2432, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503735

RESUMO

Arrest peptides containing RAPP (ArgAlaProPro) motifs have been discovered in both Gram-positive and Gram-negative bacteria, where they are thought to regulate expression of important protein localization machinery components. Here we determine cryo-EM structures of ribosomes stalled on RAPP arrest motifs in both Bacillus subtilis and Escherichia coli. Together with molecular dynamics simulations, our structures reveal that the RAPP motifs allow full accommodation of the A-site tRNA, but prevent the subsequent peptide bond from forming. Our data support a model where the RAP in the P-site interacts and stabilizes a single hydrogen atom on the Pro-tRNA in the A-site, thereby preventing an optimal geometry for the nucleophilic attack required for peptide bond formation to occur. This mechanism to short circuit the ribosomal peptidyltransferase activity is likely to operate for the majority of other RAPP-like arrest peptides found across diverse bacterial phylogenies.


Assuntos
Peptidil Transferases , Peptidil Transferases/metabolismo , Antibacterianos/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
4.
Nat Commun ; 15(1): 2431, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503753

RESUMO

Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo
5.
Nucleic Acids Res ; 49(3): 1550-1566, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33503266

RESUMO

Regulatory nascent peptides participate in the regulation of cellular functions by the mechanisms involving regulated translation arrest. A class of them in bacteria, called monitoring substrates, feedback-regulates the expression of a specific component of protein localization machinery. Three monitoring substrates, SecM, MifM and VemP have previously been identified. Here, we attempt at identifying additional arrest peptides in bacteria. Our bioinformatic searches over more than 400 bacterial genomic sequences for proteins that have the common characteristic features shared by the known monitoring substrates and subsequent in vitro and in vivo characterization of the highlighted sequences allowed the identification of three arrest peptides termed ApcA, ApdA and ApdP. ApcA and ApdA homologs are conserved among a subset of actinobacteria, whereas ApdP has homologs in a subset of α-proteobacteria. We demonstrate that these arrest peptides, in their ribosome-tethered nascent states, inhibit peptidyl transfer. The elongation arrest occurs at a specific codon near the 3' end of the coding region, in a manner depending on the amino acid sequence of the nascent chain. Interestingly, the arrest sequences of ApcA, ApdA and ApdP share a sequence R-A-P-G/P that is essential for the elongation arrest.


Assuntos
Elongação Traducional da Cadeia Peptídica , Peptídeos/química , Actinobacteria/genética , Alphaproteobacteria/genética , Códon , Biologia Computacional , Mutação , Fases de Leitura Aberta , Peptídeos/genética , Biossíntese de Proteínas , Ribossomos
6.
Cell Rep ; 33(2): 108250, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053345

RESUMO

Dynamic protein maturation, such as localization, folding, and complex formation, can occur co-translationally. To what extent do nascent polypeptides engage in the co-translational dynamics to produce the functional proteome's complement? We address this question using a protein-dynamics reporter (DR) module comprising a force-sensitive arrest sequence (Bacillus subtilis MifM) followed in frame by LacZ. An engineered transposon, TnDR, carrying DR, is transposed into the B. subtilis chromosome to create translational fusions between N-terminal regions of proteins and the C-terminal DR module. By looking for LacZ+ colonies, we identify hundreds of proteins that cancel the elongation arrest, most probably reflecting their ability to initiate the maturation/localization process co-translationally. Case studies identify B. subtilis proteins that initiate assembly with a partner molecule before completion of translation. These results suggest that co-translational maturation is a frequently occurring event in protein biogenesis.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis/genética , Genes Reporter , Biossíntese de Proteínas , Proteoma/metabolismo , Citosol/metabolismo , Testes Genéticos , Transporte Proteico , RNA Ribossômico 5S/metabolismo
7.
Nat Commun ; 10(1): 5397, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776341

RESUMO

Rescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Ribossomos/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , Conformação Proteica , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/genética
8.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-32025287

RESUMO

The Sec translocon provides a polypeptide-conducting channel, which is insulated from the hydrophobic lipidic environment of the membrane, for translocation of hydrophilic passenger polypeptides. Its lateral gate allows a downstream hydrophobic segment (stop-transfer sequence) to exit the channel laterally for integration into the lipid phase. We note that this channel model only partly accounts for the translocon function. The other essential role of translocon is to facilitate de novo insertion of the N-terminal topogenic segment of a substrate polypeptide into the membrane. Recent structural studies suggest that de novo insertion does not use the polypeptide-conducting channel; instead, it takes place directly at the lateral gate, which is prone to opening. We propose that the de novo insertion process, in concept, is similar to that of insertases (such as YidC in bacteria and EMC3 in eukaryotes), in which an intramembrane surface of the machinery provides the halfway point of insertion.


Assuntos
Canais de Translocação SEC/fisiologia , Archaea , Bactérias , Peptídeos
9.
Sci Rep ; 8(1): 10311, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985442

RESUMO

Bacillus subtilis MifM is a monitoring substrate of the YidC pathways of protein integration into the membrane and controls the expression of the YidC2 (YqjG) homolog by undergoing regulated translational elongation arrest. The elongation arrest requires interactions between the MifM nascent polypeptide and the ribosomal components near the peptidyl transferase center (PTC) as well as at the constriction site of the ribosomal exit tunnel. Here, we addressed the roles played by more N-terminal regions of MifM and found that, in addition to the previously-identified arrest-provoking elements, the MifM residues 41-60 likely located at the tunnel exit and outside the ribosome contribute to the full induction of elongation arrest. Mutational effects of the cytosolically exposed part of the ribosomal protein uL23 suggested its involvement in the elongation arrest, presumably by interacting with the extra-ribosomal portion of MifM. In vitro translation with reconstituted translation components recapitulated the effects of the mutations at the 41-60 segment, reinforcing the importance of direct molecular interactions between the nascent chain and the ribosome. These results indicate that the nascent MifM polypeptide interacts extensively with the ribosome both from within and without to direct the elongation halt and consequent up-regulation of YidC2.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mutação da Fase de Leitura , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Alinhamento de Sequência
10.
FEMS Microbiol Lett ; 365(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790986

RESUMO

Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica , Transporte Proteico , Proteínas de Bactérias/genética , Regulação Enzimológica da Expressão Gênica , Biossíntese de Proteínas , Transcrição Gênica
11.
Mol Cell ; 68(3): 528-539.e5, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100053

RESUMO

Nascent polypeptides can modulate the polypeptide elongation speed on the ribosome. Here, we show that nascent chains can even destabilize the translating Escherichia coli ribosome from within. This phenomenon, termed intrinsic ribosome destabilization (IRD), occurs in response to a special amino acid sequence of the nascent chain, without involving the release or the recycling factors. Typically, a consecutive array of acidic residues and those intermitted by alternating prolines induce IRD. The ribosomal protein bL31, which bridges the two subunits, counteracts IRD, such that only strong destabilizing sequences abort translation in living cells. We found that MgtL, the leader peptide of a Mg2+ transporter (MgtA), contains a translation-aborting sequence, which sensitizes the ribosome to a decline in Mg2+ concentration and thereby triggers the MgtA-upregulating genetic scheme. Translation proceeds at an inherent risk of ribosomal destabilization, and nascent chain-ribosome complexes can function as a Mg2+ sensor by harnessing IRD.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Conformação Proteica , Estabilidade Proteica , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 113(7): E829-38, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831095

RESUMO

Although the importance of the nonuniform progression of elongation in translation is well recognized, there have been few attempts to explore this process by directly profiling nascent polypeptides, the relevant intermediates of translation. Such approaches will be essential to complement other approaches, including ribosome profiling, which is extremely powerful but indirect with respect to the actual translation processes. Here, we use the nascent polypeptide's chemical trait of having a covalently attached tRNA moiety to detect translation intermediates. In a case study, Escherichia coli SecA was shown to undergo nascent polypeptide-dependent translational pauses. We then carried out integrated in vivo and in vitro nascent chain profiling (iNP) to characterize 1,038 proteome members of E. coli that were encoded by the first quarter of the chromosome with respect to their propensities to accumulate polypeptidyl-tRNA intermediates. A majority of them indeed undergo single or multiple pauses, some occurring only in vitro, some occurring only in vivo, and some occurring both in vivo and in vitro. Thus, translational pausing can be intrinsically robust, subject to in vivo alleviation, or require in vivo reinforcement. Cytosolic and membrane proteins tend to experience different classes of pauses; membrane proteins often pause multiple times in vivo. We also note that the solubility of cytosolic proteins correlates with certain categories of pausing. Translational pausing is widespread and diverse in nature.


Assuntos
Biossíntese de Proteínas , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Genes Bacterianos , Puromicina/farmacologia , RNA de Transferência/genética
13.
Proc Natl Acad Sci U S A ; 112(40): E5513-22, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392525

RESUMO

SecDF interacts with the SecYEG translocon in bacteria and enhances protein export in a proton-motive-force-dependent manner. Vibrio alginolyticus, a marine-estuarine bacterium, contains two SecDF paralogs, V.SecDF1 and V.SecDF2. Here, we show that the export-enhancing function of V.SecDF1 requires Na+ instead of H+, whereas V.SecDF2 is Na+-independent, presumably requiring H+. In accord with the cation-preference difference, V.SecDF2 was only expressed under limited Na+ concentrations whereas V.SecDF1 was constitutive. However, it is not the decreased concentration of Na+ per se that the bacterium senses to up-regulate the V.SecDF2 expression, because marked up-regulation of the V.SecDF2 synthesis was observed irrespective of Na+ concentrations under certain genetic/physiological conditions: (i) when the secDF1VA gene was deleted and (ii) whenever the Sec export machinery was inhibited. VemP (Vibrio export monitoring polypeptide), a secretory polypeptide encoded by the upstream ORF of secDF2VA, plays the primary role in this regulation by undergoing regulated translational elongation arrest, which leads to unfolding of the Shine-Dalgarno sequence for translation of secDF2VA. Genetic analysis of V. alginolyticus established that the VemP-mediated regulation of SecDF2 is essential for the survival of this marine bacterium in low-salinity environments. These results reveal that a class of marine bacteria exploits nascent-chain ribosome interactions to optimize their protein export pathways to propagate efficiently under different ionic environments that they face in their life cycles.


Assuntos
Proteínas de Bactérias/genética , Biossíntese de Proteínas , Tolerância ao Sal/genética , Vibrio/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Immunoblotting , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Transporte Proteico/genética , Força Próton-Motriz/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Salinidade , Água do Mar/microbiologia , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Vibrio/metabolismo
14.
FEBS Lett ; 588(17): 3098-103, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24967850

RESUMO

SecM in Escherichia coli has two functionally crucial regions. The arrest motif near the C-terminus interacts with the ribosomal exit tunnel to arrest its own translational elongation. The signal sequence at the N-terminus directs the SecM nascent polypeptide to the Sec-mediated export pathway to release the arrested state of translation. Here, we addressed the importance of the central region of SecM. Characterization of internal substitution and deletion mutants revealed that a segment from residue 100 to residue 109 is required for the export-coupled release of the SecM nascent chain from the elongation-arrested state. Thus, the central region of SecM is not just a geometric linker but it participates actively in the regulation of translation arrest.


Assuntos
Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Escherichia coli/citologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Transporte Proteico , Ribossomos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Annu Rev Biochem ; 82: 171-202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23746254

RESUMO

Each peptide bond of a protein is generated at the peptidyl transferase center (PTC) of the ribosome and then moves through the exit tunnel, which accommodates ever-changing segments of ≈ 40 amino acids of newly translated polypeptide. A class of proteins, called ribosome arrest peptides, contains specific sequences of amino acids (arrest sequences) that interact with distinct components of the PTC-exit tunnel region of the ribosome and arrest their own translation continuation, often in a manner regulated by environmental cues. Thus, the ribosome that has translated an arrest sequence is inactivated for peptidyl transfer, translocation, or termination. The stalled ribosome then changes the configuration or localization of mRNA, resulting in specific biological outputs, including regulation of the target gene expression and downstream events of mRNA/polypeptide maturation or localization. Living organisms thus seem to have integrated potentially harmful arrest sequences into elaborate regulatory mechanisms to express genetic information in productive directions.


Assuntos
Peptídeos/química , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Ribossomos/genética
16.
Mol Cell ; 47(6): 863-72, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22864117

RESUMO

Bacillus subtilis MifM uses polypeptide-instructed ribosomal stalling to control translation of YidC2, a membrane protein biogenesis factor. In contrast to other stalling systems involving a single arrest point, our in vitro translation/toeprint experiments show that the B. subtilis ribosome stalls consecutively at multiple codons of MifM. This mode of elongation arrest depends on nascent chain residues at the middle of the ribosomal exit tunnel and a few (four for the maximum functionality) negative charges residing proximally to the arrest points. The latter element does not require exact amino acid sequence, and this feature may underlie the multisite stalling. The arrested nascent chains were not efficiently transferred to puromycin, suggesting that growing MifM nascent chains inhibit peptidyl transferase center after acquiring an acidic residue(s). Multisite stalling seems to provide a unique means for MifM to achieve a sufficient duration of ribosomal stalling required for the regulatory function.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Membrana Transportadoras/biossíntese , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Peptidil Transferases/metabolismo , Biossíntese de Proteínas
17.
PLoS One ; 6(12): e28413, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22162769

RESUMO

Although co-translational biological processes attract much attention, no general and easy method has been available to detect cellular nascent polypeptide chains, which we propose to call collectively a "nascentome." We developed a method to selectively detect polypeptide portions of cellular polypeptidyl-tRNAs and used it to study the generality of the quality control reactions that rescue dead-end translation complexes. To detect nascent polypeptides, having their growing ends covalently attached to a tRNA, cellular extracts are separated by SDS-PAGE in two dimensions, first with the peptidyl-tRNA ester bonds preserved and subsequently after their in-gel cleavage. Pulse-labeled nascent polypeptides of Escherichia coli form a characteristic line below the main diagonal line, because each of them had contained a tRNA of nearly uniform size in the first-dimension electrophoresis but not in the second-dimension. The detection of nascent polypeptides, separately from any translation-completed polypeptides or degradation products thereof, allows us to follow their fates to gain deeper insights into protein biogenesis and quality control pathways. It was revealed that polypeptidyl-tRNAs were significantly stabilized in E. coli upon dysfunction of the tmRNA-ArfA ribosome-rescuing system, whose function had only been studied previously using model constructs. Our results suggest that E. coli cells are intrinsically producing aberrant translation products, which are normally eliminated by the ribosome-rescuing mechanisms.


Assuntos
Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Bioquímica/métodos , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Modelos Biológicos , Mutação , Peptídeos/química , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteômica/métodos , RNA de Transferência/química , Aminoacil-RNA de Transferência/química , Ribossomos/química , Ribossomos/metabolismo , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 108(15): 6073-8, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21383133

RESUMO

Nascent chain-mediated translation arrest serves as a mechanism of gene regulation. A class of regulatory nascent polypeptides undergoes elongation arrest in manners controlled by the dynamic behavior of the growing chain; Escherichia coli SecM monitors the Sec protein export pathway and Bacillus subtilis MifM monitors the YidC membrane protein integration/folding pathway. We show that MifM and SecM interact with the ribosome in a species-specific manner to stall only the ribosome from the homologous species. Despite this specificity, MifM is not exclusively designed to monitor membrane protein integration because it can be converted into a secretion monitor by replacing the N-terminal transmembrane sequence with a secretion signal sequence. These results show that a regulatory nascent chain is composed of two modular elements, one devoted to elongation arrest and another devoted to subcellular targeting, and they imply that physical pulling force generated by the latter triggers release of the arrest executed by the former. The combinatorial nature may assure common occurrence of nascent chain-mediated regulation.


Assuntos
Bacillus subtilis/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Fatores de Transcrição/metabolismo , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Especificidade da Espécie
19.
EMBO J ; 28(22): 3461-75, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19779460

RESUMO

Proteins in the YidC/Oxa1/Alb3 family have essential functions in membrane protein insertion and folding. Bacillus subtilis encodes two YidC homologs, one that is constitutively expressed (spoIIIJ/yidC1) and a second (yqjG/yidC2) that is induced in spoIIIJ mutants. Regulated induction of yidC2 allows B. subtilis to maintain capacity of the membrane protein insertion pathway. We here show that a gene located upstream of yidC2 (mifM/yqzJ) serves as a sensor of SpoIIIJ activity that regulates yidC2 translation. Decreased SpoIIIJ levels or deletion of the MifM transmembrane domain arrests mifM translation and unfolds an mRNA hairpin that otherwise blocks initiation of yidC2 translation. This regulated translational arrest and yidC2 induction require a specific interaction between the MifM C-terminus and the ribosomal polypeptide exit tunnel. MifM therefore acts as a ribosome-nascent chain complex rather than as a fully synthesized protein. B. subtilis MifM and the previously described secretion monitor SecM in Escherichia coli thereby provide examples of the parallel evolution of two regulatory nascent chains that monitor different protein export pathways by a shared molecular mechanism.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Membrana/biossíntese , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas/genética , Regulação para Cima
20.
Mol Microbiol ; 60(2): 448-57, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16573693

RESUMO

Two membrane proteases, FtsH and HtpX, are jointly essential for Escherichia coli cell viability, presumably through their abilities to degrade abnormal membrane proteins. To search for additional cellular factors involved in membrane protein quality control, we isolated multicopy suppressors that alleviated the growth defect of the ftsH/htpX dual disruption mutant. One of them was ybbK, which is renamed qmcA, encoding a membrane-bound prohibitin homology (PHB) domain family protein. Multicopy suppression was also observed with hflK-hflC, encoding another set of PHB domain membrane proteins, which had been known to form a complex (HflKC) and to interact with FtsH. Whereas the DeltaftsH sfhC21 (a viability defect suppressor for DeltaftsH) strain exhibited temperature sensitivity in the presence of cAMP, additional disruption of both qmcA and hflK-hflC exaggerated the growth defect. Pull-down and sedimentation experiments showed that QmcA, like HflKC, forms an oligomer and interacts with FtsH. Protease accessibility assays revealed that QmcA, unlike periplasmically exposed HflKC, possesses a cytoplasmically disposed large C-terminal domain, thus assuming the type I (NOUT-CIN) orientation. We discuss possible significance of having PHB domains on both sides of the membrane.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Supressão Genética , Proteases Dependentes de ATP , Membrana Celular/química , Membrana Celular/enzimologia , AMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Dosagem de Genes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Proteínas de Membrana/análise , Metaloproteases , Fenótipo , Proibitinas , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA