Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Membr Biol ; 254(5-6): 531-548, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748042

RESUMO

Na+,K+-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown. Using human kidney (HK-2) cells, we determined that the phosphorylation of Tyr10 was stimulated by the epidermal growth factor (EGF), which was opposed by inhibitors of Src kinases (PP2), tyrosine kinases (genistein), and EGF receptor (EGFR, gefitinib). AMPK activators AICAR and A-769662 suppressed the EGF-stimulated phosphorylation of EGFR (Tyr1173) and NKAα1 at Tyr10. The phosphorylation of Src (Tyr416) was unaltered by AICAR and increased by A-769662. Conversely, ouabain (100 nM), a pharmacological NKA inhibitor and a putative adrenocortical hormone, enhanced the EGF-stimulated Tyr10 phosphorylation without altering the phosphorylation of EGFR (Tyr1173) or Src (Tyr416). Ouabain (100-1000 nM) increased the ADP:ATP ratio, while it suppressed the lactate production and the oxygen consumption rate in a dose-dependent manner. Treatment with ouabain or gene silencing of NKAα1 or NKAα3 subunit did not activate AMPK. In summary, AMPK activators and ouabain had antagonistic effects on the phosphorylation of NKAα1 at Tyr10 in cultured HK-2 cells, which implicates a role for Tyr10 in coordinated regulation of NKA-mediated ion transport and energy metabolism.


Assuntos
Rim , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Íons/metabolismo , Rim/metabolismo , Ouabaína/farmacologia , Fosforilação/efeitos dos fármacos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Am J Physiol Cell Physiol ; 321(5): C770-C778, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495765

RESUMO

Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin ß4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X did not ameliorate the metabolic disruptions associated with diet induced-obesity, nor did it enhance muscle regeneration in vivo. However, TMSB4X increased osteoblast proliferation and neurite outgrowth, consistent with its WADA classification as a prohibited growth factor. Therefore, we report TMSB4X as a human exerkine with a potential role in cellular cross talk.


Assuntos
Proliferação de Células/efeitos dos fármacos , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Timosina/metabolismo , Timosina/farmacologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Osteoblastos/patologia , Resistência Física , Proteômica , Transdução de Sinais , Espectrometria de Massas em Tandem
3.
Diabetologia ; 64(9): 2077-2091, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34131782

RESUMO

AIMS/HYPOTHESIS: Increased levels of branched-chain amino acids (BCAAs) are associated with type 2 diabetes pathogenesis. However, most metabolomic studies are limited to an analysis of plasma metabolites under fasting conditions, rather than the dynamic shift in response to a metabolic challenge. Moreover, metabolomic profiles of peripheral tissues involved in glucose homeostasis are scarce and the transcriptomic regulation of genes involved in BCAA catabolism is partially unknown. This study aimed to identify differences in circulating and skeletal muscle BCAA levels in response to an OGTT in individuals with normal glucose tolerance (NGT) or type 2 diabetes. Additionally, transcription factors involved in the regulation of the BCAA gene set were identified. METHODS: Plasma and vastus lateralis muscle biopsies were obtained from individuals with NGT or type 2 diabetes before and after an OGTT. Plasma and quadriceps muscles were harvested from skeletal muscle-specific Ppargc1a knockout and transgenic mice. BCAA-related metabolites and genes were assessed by LC-MS/MS and quantitative RT-PCR, respectively. Small interfering RNA and adenovirus-mediated overexpression techniques were used in primary human skeletal muscle cells to study the role of PPARGC1A and ESRRA in the expression of the BCAA gene set. Radiolabelled leucine was used to analyse the impact of oestrogen-related receptor α (ERRα) knockdown on leucine oxidation. RESULTS: Impairments in BCAA catabolism in people with type 2 diabetes under fasting conditions were exacerbated after a glucose load. Branched-chain keto acids were reduced 37-56% after an OGTT in the NGT group, whereas no changes were detected in individuals with type 2 diabetes. These changes were concomitant with a stronger correlation with glucose homeostasis biomarkers and downregulated expression of branched-chain amino acid transaminase 2, branched-chain keto acid dehydrogenase complex subunits and 69% of downstream BCAA-related genes in skeletal muscle. In primary human myotubes overexpressing peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, encoded by PPARGC1A), 61% of the analysed BCAA genes were upregulated, while 67% were downregulated in the quadriceps of skeletal muscle-specific Ppargc1a knockout mice. ESRRA (encoding ERRα) silencing completely abrogated the PGC-1α-induced upregulation of BCAA-related genes in primary human myotubes. CONCLUSIONS/INTERPRETATION: Metabolic inflexibility in type 2 diabetes impacts BCAA homeostasis and attenuates the decrease in circulating and skeletal muscle BCAA-related metabolites after a glucose challenge. Transcriptional regulation of BCAA genes in primary human myotubes via PGC-1α is ERRα-dependent.


Assuntos
Diabetes Mellitus Tipo 2 , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Cromatografia Líquida , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Estrogênio , Espectrometria de Massas em Tandem , Receptor ERRalfa Relacionado ao Estrogênio
4.
PLoS One ; 16(2): e0247377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635930

RESUMO

Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (α and ß) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit α1S, and SERCA2 as well as NKAα2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7-10 days. A short-term co-culture (10-11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKAα1, NKAα2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with α-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAß2, NKAß3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKAα2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKAα2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.


Assuntos
Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Músculo Esquelético/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Estimulação Elétrica , Regulação da Expressão Gênica , Humanos , Contração Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Ratos
5.
Metabolism ; 118: 154726, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581131

RESUMO

BACKGROUND & AIMS: The physiological regulation and contribution of the multiple phosphorylation sites of insulin receptor substrate 1 (IRS1) to the pathogenesis of insulin resistance is unknown. Our aims were to map the phosphorylated motifs of IRS1 in skeletal muscle from people with normal glucose tolerance (NGT; n = 11) or type 2 diabetes mellitus (T2DM; n = 11). METHODS: Skeletal muscle biopsies were obtained under fasted conditions or during a euglycemic clamp and IRS1 phosphorylation sites were identified by mass spectrometry. RESULTS: We identified 33 phosphorylation sites in biopsies from fasted individuals, including 2 previously unreported sites ([Ser393] and [Thr1017]). In men with NGT and T2DM, insulin increased phosphorylation of 5 peptides covering 10 serine or threonine sites and decreased phosphorylation of 6 peptides covering 9 serine, threonine or tyrosine sites. Insulin-stimulation increased phosphorylation of 2 peptides, and decreased phosphorylation of 2 peptides only in men with NGT. Insulin increased phosphorylation of 2 peptides only in men with T2DM. CONCLUSIONS: Despite severe skeletal muscle insulin resistance, the pattern of IRS1 phosphorylation was not uniformly altered in T2DM. Our results contribute to the evolving understanding of the physiological regulation of insulin signaling and complement the comprehensive map of IRS1 phosphorylation in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Teste de Tolerância a Glucose , Proteínas Substratos do Receptor de Insulina/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Biópsia , Estudos de Casos e Controles , Humanos , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Fosforilação , Transdução de Sinais
6.
J Muscle Res Cell Motil ; 42(1): 77-97, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398789

RESUMO

AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina Trifosfatases/metabolismo , Íons/metabolismo , Músculo Esquelético/metabolismo , Humanos
7.
Am J Physiol Cell Physiol ; 318(5): C1030-C1041, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293933

RESUMO

Na,K-ATPase is a membrane transporter that is critically important for skeletal muscle function. Mdx and Bla/J mice are the experimental models of Duchenne muscular dystrophy and dysferlinopathy that are known to differ in the molecular mechanism of the pathology. This study examines the function of α1- and α2-Na,K-ATPase isozymes in respiratory diaphragm and postural soleus muscles from mdx and Bla/J mice compared with control С57Bl/6 mice. In diaphragm muscles, the motor endplate structure was severely disturbed (manifested by defragmentation) in mdx mice only. The endplate membrane of both Bla/J and mdx mice was depolarized due to specific loss of the α2-Na,K-ATPase electrogenic activity and its decreased membrane abundance. Total FXYD1 subunit (modulates Na,K-ATPase activity) abundance was decreased in both mouse models. However, the α2-Na,K-ATPase protein content as well as mRNA expression were specifically and significantly reduced only in mdx mice. The endplate membrane cholesterol redistribution was most pronounced in mdx mice. Soleus muscles from Bla/J and mdx mice demonstrated reduction of the α2-Na,K-ATPase membrane abundance and mRNA expression similar to the diaphragm muscles. In contrast to diaphragm, the α2-Na,K-ATPase protein content was altered in both Bla/J and mdx mice; membrane cholesterol re-distribution was not observed. Thus, the α2-Na,K-ATPase is altered in both Bla/J and mdx mouse models of chronic muscle pathology. However, despite some similarities, the α2-Na,K-ATPase and cholesterol abnormalities are more pronounced in mdx mice.


Assuntos
Proteínas de Membrana/genética , Distrofias Musculares/genética , Fosfoproteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Colesterol/genética , Colesterol/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Placa Motora/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Isoformas de Proteínas/genética , RNA Mensageiro/genética
8.
Diabetes Res Clin Pract ; 158: 107928, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31734225

RESUMO

OBJECTIVE: To compare basal insulin and mTOR signaling in subcutaneous fat of obese T2DM vs. obese subjects with normal glucose tolerance (NGT), and correlate it with clinical parameters of carbohydrate metabolism and incretin secretion profiles. METHODS: Recruited were 22 patients with long (>10 years) and morbid (BMI > 35 kg/m2) obesity, 12 of which had NGT and 10 had T2DM. Hyperinsulinemic-euglycemic clamp test and HOMA-IR were used to measure insulin resistance. Blood samples taken at 0, 30 and 120 min of food load test were used to assess incretin profile, insulin and glucose levels. Amount of total and visceral fat was determined by bioelectrical impedance analysis. Subcutaneous fat biopsies were obtained during bariatric surgery for all patients and analyzed by western blots. RESULTS: As assessed by western blots of insulin receptor substrate (IRS), Akt, Raptor, Rictor, mTOR and S6K1, the basal insulin signaling and mTORC activities were comparable in NGT and T2DM groups, whereas phosphorylation of AS160 was significantly lower and that of serum and glucocorticoid-induced kinase (SGK) was significantly higher in T2DM group. Various correlations were found between the degree of insulin resistance and amount of visceral fat, changes in incretin profile, glucose metabolic parameters and phosphorylation level of AS160, incretin secretion profile and phosphorylated levels of AS160 or SGK1. CONCLUSION: Altered phosphorylation of AS160 and SGK1 is associated with obese T2DM phenotype.


Assuntos
Tecido Adiposo/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Incretinas/metabolismo , Insulina/sangue , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Curr Top Membr ; 83: 315-351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31196608

RESUMO

Na+-K+-ATPase, an α/ß heterodimer, is an ancient enzyme that maintains Na+ and K+ gradients, thus preserving cellular ion homeostasis. In multicellular organisms, this basic housekeeping function is integrated to fulfill the needs of specialized organs and preserve whole-body homeostasis. In vertebrates, Na+-K+-ATPase is essential for many fundamental physiological processes, such as nerve conduction, muscle contraction, nutrient absorption, and urine excretion. During vertebrate evolution, three key developments contributed to diversification and integration of Na+-K+-ATPase functions. Generation of novel α- and ß-subunits led to formation of multiple Na+-K+-ATPase isoenyzmes with distinct functional characteristics. Development of a complex endocrine system enabled efficient coordination of diverse Na+-K+-ATPase functions. Emergence of FXYDs, small transmembrane proteins that regulate Na+-K+-ATPase, opened new ways to modulate its function. FXYDs are a vertebrate innovation and an important site of hormonal action, suggesting they played an especially prominent role in evolving interaction between Na+-K+-ATPase and the endocrine system in vertebrates.


Assuntos
Evolução Biológica , Hormônios/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Humanos , ATPase Trocadora de Sódio-Potássio/química
10.
FASEB J ; 33(9): 10551-10562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31225998

RESUMO

During exercise, skeletal muscles release cytokines, peptides, and metabolites that exert autocrine, paracrine, or endocrine effects on glucose homeostasis. In this study, we investigated the effects of secreted protein acidic and rich in cysteine (SPARC), an exercise-responsive myokine, on glucose metabolism in human and mouse skeletal muscle. SPARC-knockout mice showed impaired systemic metabolism and reduced phosphorylation of AMPK and protein kinase B in skeletal muscle. Treatment of SPARC-knockout mice with recombinant SPARC improved glucose tolerance and concomitantly activated AMPK in skeletal muscle. These effects were dependent on AMPK-γ3 because SPARC treatment enhanced skeletal muscle glucose uptake in wild-type mice but not in AMPK-γ3-knockout mice. SPARC strongly interacted with the voltage-dependent calcium channel, and inhibition of calcium-dependent signaling prevented SPARC-induced AMPK phosphorylation in human and mouse myotubes. Finally, chronic SPARC treatment improved systemic glucose tolerance and AMPK signaling in skeletal muscle of high-fat diet-induced obese mice, highlighting the efficacy of SPARC treatment in the management of metabolic diseases. Thus, our findings suggest that SPARC treatment mimics the effects of exercise on glucose tolerance by enhancing AMPK-dependent glucose uptake in skeletal muscle.-Aoi, W., Hirano, N., Lassiter, D. G., Björnholm, M., Chibalin, A. V., Sakuma, K., Tanimura, Y., Mizushima, K., Takagi, T., Naito, Y., Zierath, J. R., Krook, A. Secreted protein acidic and rich in cysteine (SPARC) improves glucose tolerance via AMP-activated protein kinase activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Intolerância à Glucose/prevenção & controle , Glucose/metabolismo , Músculo Esquelético/patologia , Obesidade/prevenção & controle , Osteonectina/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , Transdução de Sinais
11.
Cell Calcium ; 76: 72-86, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30300758

RESUMO

Elevation of Ca2+i and AMP-activated protein kinase (AMPK) are considered as major signals triggering transcriptomic changes in exercising skeletal muscle. Electrical pulse stimulation (EPS) of cultured myotubes is widely employed as an in vitro model of muscle contraction. This study examines the impact of Ca2+i-mediated and Ca2+i-independent signaling in transcriptomic changes in EPS-treated C2C12 myotubes. Electrical pulse stimulation (40 V, 1 Hz, 10 ms, 2 h) resulted in [Ca2+]i oscillations, gain of Na+i, loss of K+i, and differential expression of 3215 transcripts. Additions of 10 µM nicardipine abolished [Ca2+]i oscillations but did not affect elevation of the [Na+]i/[K+]i ratio seen in EPS-treated myotubes. Differential expression of 1018 transcripts was preserved in the presence of nicardipine, indicating a Ca2+i-independent mechanism of excitation-transcription coupling. Among nicardipine-resistant transcripts, we noted 113 transcripts whose expression was also affected by partial Na+,K+-ATPase inhibition with 30 µM ouabain providing the same elevation of the [Na+]i/[K+]i ratio as in EPS-treated cells. Electrical pulse stimulation increased phosphorylation of CREB, ATF-1, Akt, ERK, and p38 MAPK without any impact on phosphorylation of acetyl-CoA carboxylase and Unc-51 like autophagy activating kinase-1, i.e. downstream markers of AMPK activation. Unlike CREB, ATF-1, and MAPKs, an increment in Akt phosphorylation was abolished by nicardipine. Thus, our results show that Ca2+i-independent signaling plays a key role in altered expression of 30% of studied genes in EPS-treated myotubes. This signaling pathway is at least partially triggered by dissipation of transmembrane gradients of monovalent cations.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Transcriptoma , Animais , Células Cultivadas , Estimulação Elétrica , Camundongos , Potássio/análise , Sódio/análise , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
Am J Physiol Cell Physiol ; 315(6): C803-C817, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230919

RESUMO

AMP-activated kinase (AMPK) is a major regulator of energy metabolism and a promising target for development of new treatments for type 2 diabetes and cancer. 5-Aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR), an adenosine analog, is a standard positive control for AMPK activation in cell-based assays. Some broadly used cell culture media, such as minimal essential medium α (MEMα), contain high concentrations of adenosine and other nucleosides. We determined whether such media alter AICAR action in skeletal muscle and cancer cells. In nucleoside-free media, AICAR stimulated AMPK activation, increased glucose uptake, and suppressed cell proliferation. Conversely, these effects were blunted or completely blocked in MEMα that contains nucleosides. Addition of adenosine or 2'-deoxyadenosine to nucleoside-free media also suppressed AICAR action. MEMα with nucleosides blocked AICAR-stimulated AMPK activation even in the presence of methotrexate, which normally markedly enhances AICAR action by reducing its intracellular clearance. Other common media components, such as vitamin B-12, vitamin C, and α-lipoic acid, had a minor modulatory effect on AICAR action. Our findings show that nucleoside-containing media, commonly used in AMPK research, block action of the most widely used pharmacological AMPK activator AICAR. Results of cell-based assays in which AICAR is used for AMPK activation therefore critically depend on media formulation. Furthermore, our findings highlight a role for extracellular nucleosides and nucleoside transporters in regulation of AMPK activation.


Assuntos
Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Neoplasias/genética , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Adenosina/genética , Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Meios de Cultura/química , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Nucleosídeos/biossíntese , Nucleosídeos/genética , Proteínas Quinases/metabolismo , Ribonucleotídeos/biossíntese , Ribonucleotídeos/genética , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Vitamina B 12/química , Vitamina B 12/farmacologia
13.
Diabetologia ; 61(2): 424-432, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29022062

RESUMO

AIMS/HYPOTHESIS: Insulin-mediated signals and AMP-activated protein kinase (AMPK)-mediated signals are activated in response to physiological conditions that represent energy abundance and shortage, respectively. Focal adhesion kinase (FAK) is implicated in insulin signalling and cancer progression in various non-muscle cell types and plays a regulatory role during skeletal muscle differentiation. The role of FAK in skeletal muscle in relation to insulin stimulation or AMPK activation is unknown. We examined the effects of insulin or AMPK activation on FAK phosphorylation in human skeletal muscle and the direct role of FAK on glucose and lipid metabolism. We hypothesised that insulin treatment and AMPK activation would have opposing effects on FAK phosphorylation and that gene silencing of FAK would alter metabolism. METHODS: Human muscle was treated with insulin or the AMPK-activating compound 5-aminoimadazole-4-carboxamide ribonucleotide (AICAR) to determine FAK phosphorylation and glucose transport. Primary human skeletal muscle cells were used to study the effects of insulin or AICAR treatment on FAK signalling during serum starvation, as well as to determine the metabolic consequences of silencing the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397 in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated by increased p-ACCS222, concomitant with reduced p-FAKY397. FAK signalling was reduced owing to serum starvation and AICAR treatment as demonstrated by reduced p-paxillinY118. Silencing PTK2 in primary human skeletal muscle cells increased palmitate oxidation and reduced glycogen synthesis. CONCLUSIONS/INTERPRETATION: AMPK regulates FAK signalling in skeletal muscle. Moreover, siRNA-mediated FAK knockdown enhances lipid oxidation while impairing glycogen synthesis in skeletal muscle. Further exploration of the interaction between AMPK and FAK may lead to novel therapeutic strategies for diabetes and other chronic conditions associated with an altered metabolic homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Músculo Esquelético/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Biópsia , Células Cultivadas , Feminino , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
Am J Physiol Endocrinol Metab ; 311(1): E1-E31, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27166285

RESUMO

Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.


Assuntos
Metabolismo Energético , Hormônios/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Aldosterona/metabolismo , Peptídeo C/metabolismo , Membrana Celular/metabolismo , Epinefrina/metabolismo , Regulação da Expressão Gênica , Humanos , Hidrocortisona/metabolismo , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Norepinefrina/metabolismo , Fosforilação , Transporte Proteico , ATPase Trocadora de Sódio-Potássio/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
15.
J Gen Physiol ; 147(2): 175-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26755774

RESUMO

The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6-12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated differently.


Assuntos
Isoenzimas/metabolismo , Músculo Esquelético/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Masculino , Potenciais da Membrana/fisiologia , Proteínas de Membrana/metabolismo , Contração Muscular/fisiologia , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Ratos , Ratos Wistar , Receptores Nicotínicos/metabolismo , Sarcolema/metabolismo
16.
Am J Physiol Endocrinol Metab ; 309(4): E388-97, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26105008

RESUMO

-Reactive oxygen species (ROS) produced in skeletal muscle may play a role in potentiating the beneficial responses to exercise; however, the effects of exercise-induced ROS on insulin action and protein signaling in humans has not been fully elucidated. Seven healthy, recreationally active participants volunteered for this double-blind, randomized, repeated-measures crossover study. Exercise was undertaken with infusion of saline (CON) or the antioxidant N-acetylcysteine (NAC) to attenuate ROS. Participants performed two 1-h cycling exercise sessions 7-14 days apart, 55 min at 65% V̇o2peak plus 5 min at 85%V̇o2peak, followed 3 h later by a 2-h hyperinsulinemic euglycemic clamp (40 mIU·min(-1)·m(2)) to determine insulin sensitivity. Four muscle biopsies were taken on each trial day, at baseline before NAC infusion (BASE), after exercise (EX), after 3-h recovery (REC), and post-insulin clamp (PI). Exercise, ROS, and insulin action on protein phosphorylation were evaluated with immunoblotting. NAC tended to decrease postexercise markers of the ROS/protein carbonylation ratio by -13.5% (P = 0.08) and increase the GSH/GSSG ratio twofold vs. CON (P < 0.05). Insulin sensitivity was reduced (-5.9%, P < 0.05) by NAC compared with CON without decreased phosphorylation of Akt or AS160. Whereas p-mTOR was not significantly decreased by NAC after EX or REC, phosphorylation of the downstream protein synthesis target kinase p70S6K was blunted by 48% at PI with NAC compared with CON (P < 0.05). We conclude that NAC infusion attenuated muscle ROS and postexercise insulin sensitivity independent of Akt signaling. ROS also played a role in normal p70S6K phosphorylation in response to insulin stimulation in human skeletal muscle.


Assuntos
Acetilcisteína/farmacologia , Exercício Físico/fisiologia , Resistência à Insulina , Insulina/metabolismo , Músculo Esquelético/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Adulto , Estudos Cross-Over , Método Duplo-Cego , Teste de Esforço , Feminino , Técnica Clamp de Glucose , Humanos , Infusões Intravenosas , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
17.
Diabetes ; 64(2): 360-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25338814

RESUMO

Methotrexate (MTX) is a widely used anticancer and antirheumatic drug that has been postulated to protect against metabolic risk factors associated with type 2 diabetes, although the mechanism remains unknown. MTX inhibits 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) and thereby slows the metabolism of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl-5'-monophosphate (ZMP) and its precursor AICAR, which is a pharmacological AMPK activator. We explored whether MTX promotes AMPK activation in cultured myotubes and isolated skeletal muscle. We found MTX markedly reduced the threshold for AICAR-induced AMPK activation and potentiated glucose uptake and lipid oxidation. Gene silencing of the MTX target ATIC activated AMPK and stimulated lipid oxidation in cultured myotubes. Furthermore, MTX activated AMPK in wild-type HEK-293 cells. These effects were abolished in skeletal muscle lacking the muscle-specific, ZMP-sensitive AMPK-γ3 subunit and in HEK-293 cells expressing a ZMP-insensitive mutant AMPK-γ2 subunit. Collectively, our findings underscore a role for AMPK as a direct molecular link between MTX and energy metabolism in skeletal muscle. Cotherapy with AICAR and MTX could represent a novel strategy to treat metabolic disorders and overcome current limitations of AICAR monotherapy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Peroxidação de Lipídeos , Metotrexato/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Linhagem Celular , Ativação Enzimática/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Subunidades Proteicas
18.
Am J Physiol Endocrinol Metab ; 305(9): E1071-80, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24022865

RESUMO

AMP-activated protein kinase (AMPK) is a pivotal regulator of energy homeostasis. Although downstream targets of AMPK are widely characterized, the physiological factors governing isoform expression of this protein kinase are largely unknown. Nerve/contractile activity has a major impact on the metabolic phenotype of skeletal muscle, therefore likely to influence AMPK isoform expression. Spinal cord injury represents an extreme form of physical inactivity, with concomitant changes in skeletal muscle metabolism. We assessed the influence of longstanding and recent spinal cord injury on protein abundance of AMPK isoforms in human skeletal muscle. We also determined muscle fiber type as a marker of glycolytic or oxidative metabolism. In subjects with longstanding complete injury, protein abundance of the AMPKγ3 subunit, as well as myosin heavy chain (MHC) IIa and IIx, were increased, whereas abundance of the AMPKγ1 subunit and MHC I were decreased. Similarly, abundance of AMPKγ3 and MHC IIa proteins were increased, whereas AMPKα2, -ß1, and -γ1 subunits and MHC I abundance was decreased during the first year following injury, reflecting a more glycolytic phenotype of the skeletal muscle. However, in incomplete cervical lesions, partial recovery of muscle function attenuated the changes in the isoform profile of AMPK and MHC. Furthermore, exercise training (electrically stimulated leg cycling) partly normalized mRNA expression of AMPK isoforms. Thus, physical activity affects the relative expression of AMPK isoforms. In conclusion, skeletal muscle abundance of AMPK isoforms is related to physical activity and/or muscle fiber type. Thus, physical/neuromuscular activity is an important determinant of isoform abundance of AMPK and MCH. This further underscores the need for physical activity as part of a treatment regimen after spinal cord injury to maintain skeletal muscle metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/enzimologia , Traumatismos da Medula Espinal/enzimologia , Adolescente , Adulto , Ciclismo/fisiologia , Biópsia , Western Blotting , Índice de Massa Corporal , Estimulação Elétrica , Feminino , Glicólise , Humanos , Isoenzimas/metabolismo , Masculino , Transtornos Musculares Atróficos , Cadeias Pesadas de Miosina/metabolismo , RNA/biossíntese , RNA/isolamento & purificação , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
19.
Diabetes ; 62(2): 457-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23043161

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is involved in cytokine- and nutrient-induced insulin resistance. The role of STAT3 in the development of skeletal muscle insulin resistance and type 2 diabetes (T2D) pathogenesis is incompletely defined. We tested the hypothesis that STAT3 signaling contributes to skeletal muscle insulin resistance in T2D. Protein abundance and phosphorylation of STAT3 signaling molecules were determined in skeletal muscle biopsy specimens from BMI- and age-matched overweight individuals with normal glucose tolerant (NGT) and T2D patients. The direct role of STAT3 in the development of lipid-induced skeletal muscle insulin resistance was determined using small interfering (si)RNA. Phosphorylated STAT3, phosphorylated Janus kinase 2 (JAK2), and suppressor of cytokine signaling 3 (SOCS3) protein abundance was increased in skeletal muscle from T2D patients. STAT3 phosphorylation positively correlated with free fatty acid level and measures of insulin sensitivity in NGT but not T2D patients. Palmitate exposure led to a constitutive phosphorylation of STAT3, increased protein abundance of SOCS3, and development of insulin resistance in L6 myotubes. These effects were prevented by siRNA-mediated STAT3 silencing. In summary, STAT3 is constitutively phosphorylated in skeletal muscle from T2D patients. STAT3 gene silencing prevents lipid-induced insulin resistance in cultured myotubes. Collectively, our results implicate excessive STAT3 signaling in the development of skeletal muscle insulin resistance in T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Ácidos Graxos não Esterificados/sangue , Feminino , Inativação Gênica , Humanos , Resistência à Insulina/genética , Janus Quinase 2/metabolismo , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Fosforilação , Ratos , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA