Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(1): 58-68, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38192078

RESUMO

Targeted protein degradation has arisen as a powerful therapeutic modality for eliminating proteins. Thus far, most heterobifunctional proteolysis targeting chimeras (PROTACs) have utilized recruiters against substrate receptors of Cullin RING E3 ubiquitin ligases, such as cereblon and VHL. However, previous studies have surprisingly uncovered molecular glue degraders that exploit a CUL4 adaptor protein DDB1 to degrade neosubstrate proteins. Here, we sought to investigate whether DDB1 recruiters can be discovered that can be exploited for PROTAC applications. We utilized activity-based protein profiling and cysteine chemoproteomic screening to identify a covalent recruiter that targets C173 on DDB1 and exploited this recruiter to develop PROTACs against BRD4 and androgen receptor (AR). We demonstrated that the BRD4 PROTAC results in selective degradation of the short BRD4 isoform over the long isoform in a proteasome, NEDDylation, and DDB1-dependent manner. We also demonstrated degradation of AR with the AR PROTAC in prostate cancer cells. Our study demonstrated that covalent chemoproteomic approaches can be used to discover recruiters against Cullin RING adapter proteins and that these recruiters can be used for PROTAC applications to degrade neo-substrates.


Assuntos
Proteínas Culina , Fatores de Transcrição , Proteólise , Proteínas Culina/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Isoformas de Proteínas/metabolismo
2.
bioRxiv ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37614621

RESUMO

Targeted protein degradation has arisen as a powerful therapeutic modality for eliminating proteins. Thus far, most heterobifunctional Proteolysis Targeting Chimeras (PROTACs) have utilized recruiters against substrate receptors of Cullin RING E3 ubiquitin ligases, such as cereblon and VHL. However, previous studies have surprisingly uncovered molecular glue degraders that exploit a CUL4A adaptor protein DDB1 to degrade neosubstrate proteins. Here, we sought to investigate whether DDB1 recruiters can be discovered that can be exploited for PROTAC applications. We utilized activity-based protein profiling and cysteine chemoproteomic screening to identify a covalent recruiter that targets C173 on DDB1 and exploited this recruiter to develop PROTACs against BRD4 and androgen receptor (AR). We demonstrated that the BRD4 PROTAC results in selective degradation of the short BRD4 isoform over the long isoform in a proteasome, NEDDylation, and DDB1-dependent manner. We also demonstrated degradation of AR with the AR PROTAC in prostate cancer cells. Our study demonstrated that covalent chemoproteomic approaches can be used to discover recruiters against Cullin RING adapter proteins and that these recruiters can be used for PROTAC applications to degrade neo-substrates.

3.
Cell Chem Biol ; 30(3): 235-247.e12, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36863346

RESUMO

Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Humanos , Camundongos , Fator de Transcrição Ikaros , Imunoterapia , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismo
4.
Biochemistry ; 62(7): 1321-1329, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36883372

RESUMO

The Myb transcription factor is involved in the proliferation of hematopoietic cells, and deregulation of its expression can lead to cancers such as leukemia. Myb interacts with various proteins, including the histone acetyltransferases p300 and CBP. Myb binds to a small domain of p300, the KIX domain (p300KIX), and inhibiting this interaction is a potential new drug discovery strategy in oncology. The available structures show that Myb binds to a very shallow pocket of the KIX domain, indicating that it might be challenging to identify inhibitors of this interaction. Here, we report the design of Myb-derived peptides which interact with p300KIX. We show that by mutating only two Myb residues that bind in or near a hotspot at the surface of p300KIX, it is possible to obtain single-digit nanomolar peptidic inhibitors of the Myb/p300KIX interaction that bind 400-fold tighter to p300KIX than wildtype Myb. These findings suggest that it might also be possible to design potent low molecular-weight compounds to disrupt the Myb/p300KIX interaction.


Assuntos
Proteína p300 Associada a E1A , Peptídeos , Proteínas Proto-Oncogênicas c-myb , Peptídeos/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-myb/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myb/química , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína p300 Associada a E1A/química
5.
Onco Targets Ther ; 8: 375-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25678804

RESUMO

BNP7787 (Tavocept, disodium 2,2'-dithio-bis-ethanesulfonate) is a novel, investigational, water-soluble disulfide that is well-tolerated and nontoxic. In separate randomized multicenter Phase II and Phase III clinical trials in non-small-cell lung cancer (NSCLC) patients, treatment with BNP7787 in combination with standard chemotherapy resulted in substantial increases in the overall survival of patients with advanced adenocarcinoma of the lung in the first-line treatment setting. We hypothesized that BNP7787 might interact with and modify human anaplastic lymphoma kinase (ALK). At least seven different variants of ALK fusions with the gene encoding the echinoderm microtubule-associated protein-like 4 (EML4) are known to occur in NSCLC. EML4-ALK fusions are thought to account for approximately 3% of NSCLC cases. Herein, we report the covalent modification of the kinase domain of human ALK by a BNP7787-derived mesna moiety and the functional consequences of this modification in ALK assays evaluating kinase activity. The kinase domain of the ALK protein crystallizes as a monomer, and BNP7787-derived mesna-cysteine adducts were observed at Cys 1235 and Cys 1156. The BNP7787-derived mesna adduct at Cys 1156 is located in close proximity to the active site and results in substantial disorder of the P-loop and activation loop (A-loop). Comparison with the P-loop of apo-ALK suggests that the BNP7787-derived mesna adduct at Cys 1156 interferes with the positioning of Phe 1127 into a small pocket now occupied by mesna, resulting in a destabilization of the loop's binding orientation. Additionally, in vitro kinase activity assays indicate that BNP7787 inhibits ALK catalytic activity and potentiates the activity of the ALK-targeted drug crizotinib.

6.
Nat Struct Mol Biol ; 21(9): 803-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108355

RESUMO

The Cul4-Rbx1-DDB1-Cereblon E3 ubiquitin ligase complex is the target of thalidomide, lenalidomide and pomalidomide, therapeutically important drugs for multiple myeloma and other B-cell malignancies. These drugs directly bind Cereblon (CRBN) and promote the recruitment of substrates Ikaros (IKZF1) and Aiolos (IKZF3) to the E3 complex, thus leading to substrate ubiquitination and degradation. Here we present the crystal structure of human CRBN bound to DDB1 and the drug lenalidomide. A hydrophobic pocket in the thalidomide-binding domain (TBD) of CRBN accommodates the glutarimide moiety of lenalidomide, whereas the isoindolinone ring is exposed to solvent. We also solved the structures of the mouse TBD in the apo state and with thalidomide or pomalidomide. Site-directed mutagenesis in lentiviral-expression myeloma models showed that key drug-binding residues are critical for antiproliferative effects.


Assuntos
Inibidores da Angiogênese/farmacologia , Proteínas de Ligação a DNA/metabolismo , Peptídeo Hidrolases/metabolismo , Talidomida/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Inibidores da Angiogênese/química , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Humanos , Lenalidomida , Camundongos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Talidomida/química , Talidomida/farmacologia , Ubiquitina-Proteína Ligases
7.
J Mol Biol ; 341(1): 93-106, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15312765

RESUMO

The SH2 domain is required for high catalytic activity in the COOH-terminal Src kinase (Csk). Previous solution studies suggest that a short peptide sequence, the SH2-kinase linker, provides a functional connection between the active site and the distal SH2 domain that could underlie this catalytic phenomenon. Substitutions in Phe183 (tyrosine, alanine, and glycine), a critical hydrophobic residue in the linker, result in large decreases in substrate turnover and large increases in the K(m) for ATP. Indeed, F183G possesses kinetic parameters that are similar to that for a truncated form of Csk lacking the SH2 domain, suggesting that a single mutation disrupts communication between this domain and the active site. Based on equilibrium and stopped-flow fluorescence experiments, the elevated K(m) values for the mutants are due to changes in the rates of phosphoryl transfer and not to reduced ATP-binding affinities. Based on hydrogen-deuterium exchange experiments, glycine substitution reduces flexibility in several polypeptide regions in Csk, tyrosine substitution increases flexibility, and alanine substitution leads to mixed effects compared to wild-type. Normal mode analysis indicates that Phe183 and its environment are under strain, a theoretical finding that supports the results of mutations. Overall, the data indicate that domain-domain interactions, controlled through the SH2-kinase linker, provide a dynamic balance within the Csk framework that is ideal for efficient phosphoryl transfer in the active site.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Quinases da Família src/metabolismo , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Biologia Computacional , Deutério/metabolismo , Cinética , Mutação , Nucleotídeos/metabolismo , Estrutura Terciária de Proteína , Fatores de Tempo , ortoaminobenzoatos/metabolismo , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA