Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32184263

RESUMO

Under metabolic stress, cellular components can assemble into distinct membraneless organelles for adaptation. One such example is cytidine 5'-triphosphate synthase (CTPS, for which there are CTPS1 and CTPS2 forms in mammals), which forms filamentous structures under glutamine deprivation. We have previously demonstrated that histidine (His)-mediated methylation regulates the formation of CTPS filaments to suppress enzymatic activity and preserve the CTPS protein under glutamine deprivation, which promotes cancer cell growth after stress alleviation. However, it remains unclear where and how these enigmatic structures are assembled. Using CTPS-APEX2-mediated in vivo proximity labeling, we found that synaptosome-associated protein 29 (SNAP29) regulates the spatiotemporal filament assembly of CTPS along the cytokeratin network in a keratin 8 (KRT8)-dependent manner. Knockdown of SNAP29 interfered with assembly and relaxed the filament-induced suppression of CTPS enzymatic activity. Furthermore, APEX2 proximity labeling of keratin 18 (KRT18) revealed a spatiotemporal association of SNAP29 with cytokeratin in response to stress. Super-resolution imaging suggests that during CTPS filament formation, SNAP29 interacts with CTPS along the cytokeratin network. This study links the cytokeratin network to the regulation of metabolism by compartmentalization of metabolic enzymes during nutrient deprivation.


Assuntos
Carbono-Nitrogênio Ligases , Histidina , Animais , Citidina Trifosfato , Histidina/genética , Queratinas
2.
Clin Cancer Res ; 26(13): 3220-3229, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32156745

RESUMO

PURPOSE: EGFR tyrosine kinase inhibitors (EGFR-TKI) benefit patients with advanced lung adenocarcinoma (ADC) harboring activating EGFR mutations. We aimed to identify biomarkers to monitor and predict the progression of patients receiving EGFR-TKIs via a comprehensive omic analysis. EXPERIMENTAL DESIGN: We applied quantitative proteomics to generate the TKI resistance-associated pleural effusion (PE) proteome from patients with ADC with or without EGFR-TKI resistance. Candidates were selected from integrated genomic and proteomic datasets. The PE (n = 33) and serum (n = 329) levels of potential biomarkers were validated with ELISAs. Western blotting was applied to detect protein expression in tissues, PEs, and a cell line. Gene knockdown, TKI treatment, and proliferation assays were used to determine EGFR-TKI sensitivity. Progression-free survival (PFS) and overall survival (OS) were assessed to evaluate the prognostic values of the potential biomarkers. RESULTS: Fifteen proteins were identified as potential biomarkers of EGFR-TKI resistance. Cadherin-3 (CDH3) was overexpressed in ADC tissues compared with normal tissues. CDH3 knockdown enhanced EGFR-TKI sensitivity in ADC cells. The PE level of soluble CDH3 (sCDH3) was increased in patients with resistance. The altered sCDH3 serum level reflected the efficacy of EGFR-TKI after 1 month of treatment (n = 43). Baseline sCDH3 was significantly associated with PFS and OS in patients with ADC after EGFR-TKI therapy (n = 76). Moreover, sCDH3 was positively associated with tumor stage in non-small cell lung cancer (n = 272). CONCLUSIONS: We provide useful marker candidates for drug resistance studies. sCDH3 is a survival predictor and real-time indicator of treatment efficacy in patients with ADC treated with EGFR-TKIs.


Assuntos
Biomarcadores Tumorais , Caderinas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Proteômica , Caderinas/sangue , Linhagem Celular Tumoral , Cromatografia Líquida , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Espectrometria de Massas em Tandem , Resultado do Tratamento
3.
Anal Chim Acta ; 1100: 118-130, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987131

RESUMO

Oral cavity cancer is a common cancer type that presents an increasingly serious global problem. Oral squamous cell carcinoma (OSCC) accounts for >90% oral cancer cases. No biomarker tests are currently available for management of this cancer type in clinical practice. Previously, we validated matrix metalloproteinase-1 (MMP1) as one of the most promising salivary biomarkers for OSCC detection. Development of a convenient, rapid and high-throughput assay should further facilitate application of salivary MMP1 measurement for early detection of OSCC. The present study aimed to develop a workflow comprising dry saliva spot (DSS) sampling and immunoenrichment-coupled MALDI-TOF MS (immuno-MALDI) analysis to quantify salivary MMP1. We generated recombinant MMP1 protein and anti-peptide antibodies against MMP1, which were used to optimize the procedures of the entire workflow, including DSS sampling, on-paper protein digestion and elution, KingFisher magnetic particle processor-assisted immuno-enrichment and MALDI-TOF MS analysis. The established workflow was applied to measure salivary MMP1 levels in DSS samples from 5 healthy donors and 9 OSCC cases. The newly developed workflow showed good precision (intra-day and inter-day variations <10%) and accuracy (80-100%) in quantification of MMP1 in DSS samples, with the limit of quantification at 3.07 ng/ml. Using this assay, we successfully detected elevated salivary MMP1 levels (ranging from 5.95 to 242.52 ng/ml) in 7 of 9 OSCC cases while MMP1 was not detectable in samples from the 5 healthy donors. In comparison, the traditional immunoassay was not effective in measuring MMP1 in DSS samples, highlighting the significant advantage of our immuno-MALDI assay. The DSS sampling format confers high flexibility and convenience of collection, storage and delivery of saliva specimens and the KingFisher-assisted immuno-MALDI analysis renders the assay as suitable for high-throughput screening. By combining the two features, the workflow developed in this study should facilitate improvement of molecular diagnostic tests for OSCC using salivary MMP1 as a biomarker.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/sangue , Teste em Amostras de Sangue Seco , Metaloproteinase 1 da Matriz/sangue , Neoplasias Bucais/sangue , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/enzimologia , Humanos , Imunoquímica , Metaloproteinase 1 da Matriz/metabolismo , Neoplasias Bucais/enzimologia , Proteínas Recombinantes/sangue , Proteínas Recombinantes/metabolismo , Saliva , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
J Proteomics ; 211: 103571, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31689561

RESUMO

For oral cancer, numerous saliva- and plasma-derived protein biomarker candidates have been discovered and/or verified; however, it is unclear about the behavior of these candidates as saliva or plasma biomarkers. In this study, we developed two targeted assays, MRM and SISCAPA-MRM, to quantify 30 potential biomarkers in both plasma and saliva samples collected from 30 healthy controls and 30 oral cancer patients. Single point measurements were used for target quantification while response curves for assay metric determination. In comparison with MRM assay, SISCAPA-MRM effectively improved (>1.5 fold) the detection sensitivity of 11 and 21 targets in measurement of saliva and plasma samples, respectively. The integrated results revealed that the salivary levels of these 30 selected biomarkers weakly correlated (r < 0.2) to their plasma levels. Five candidate biomarkers (MMP1, PADI1, TNC, CSTA and MMP3) exhibited significant alterations and disease-discriminating powers (AUC = 0.914, 0.827, 0.813, 0.77, and 0.753) in saliva sample; nevertheless, no such targets could be found in plasma samples. Our data support the notion that saliva may be more suitable for the protein biomarker-based detection of oral cancer, and the newly developed SISCAPA-MRM assay could be applied to verify multiple oral cancer biomarker candidates in saliva samples. SIGNIFICANCE: In this work we systematically determined the abundance of 30 selected targets in the paired saliva and plasma samples to evaluate the utility of saliva and plasma samples for protein biomarker-based detection of oral cancer. Our study provides significant evidence to support the use of saliva, but not blood samples, offer more opportunity to achieve the success of protein biomarker discovery for oral cancer detection.


Assuntos
Neoplasias Bucais , Saliva , Biomarcadores , Biomarcadores Tumorais , Humanos , Espectrometria de Massas , Neoplasias Bucais/diagnóstico , Proteômica
5.
J Proteome Res ; 18(1): 449-460, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30336044

RESUMO

MicroRNAs are noncoding RNA species comprising 18-23 nucleotides that regulate host-virus interaction networks. Here, we show that enterovirus A71 infection in human rhabdomyosarcoma (RD) is regulated by miR-197 expression. Transfection of miR-197 mimic into RD cells inhibited virus replication by interfering with the viral RNA synthesis. We employed a combination of mass-spectrometry-based quantitative proteomics with the stable isotope labeling with amino acids in cell culture (SILAC) approach for the identification of the miR-197 target genes in RD cells and to investigate the differential expression of the prospective target proteins. A total of 1822 proteins were repeatedly identified in miR-197-transfected RD cells, 106 of which were predicted to have seed sites by TargetScan. Notably, seven of eight selected genes potentially related to viral replication and immune response were validated as direct miR-197 targets, using a luciferase 3'-untranslated region (UTR) reporter assay. The expression levels of three selected endogenous molecules (ITGAV, ETF1, and MAP2K1/MEK1) were significantly reduced when RD cells were transfected with a miR-197 mimic. Our results provide a comprehensive database of miR-197 targets, which might provide better insights into the understanding of host-virus interaction.


Assuntos
Enterovirus Humano A/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/fisiologia , Proteômica/métodos , Rabdomiossarcoma/virologia , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/farmacologia , RNA Viral/efeitos dos fármacos , Rabdomiossarcoma/genética , Replicação Viral/efeitos dos fármacos
6.
Cell Rep ; 24(10): 2733-2745.e7, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184506

RESUMO

CTP synthase (CTPS) forms compartmentalized filaments in response to substrate availability and environmental nutrient status. However, the physiological role of filaments and mechanisms for filament assembly are not well understood. Here, we provide evidence that CTPS forms filaments in response to histidine influx during glutamine starvation. Tetramer conformation-based filament formation restricts CTPS enzymatic activity during nutrient deprivation. CTPS protein levels remain stable in the presence of histidine during nutrient deprivation, followed by rapid cell growth after stress relief. We demonstrate that filament formation is controlled by methylation and that histidine promotes re-methylation of homocysteine by donating one-carbon intermediates to the cytosolic folate cycle. Furthermore, we find that starvation stress and glutamine deficiency activate the GCN2/ATF4/MTHFD2 axis, which coordinates CTPS filament formation. CTPS filament formation induced by histidine-mediated methylation may be a strategy used by cancer cells to maintain homeostasis and ensure a growth advantage in adverse environments.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Histidina/metabolismo , Animais , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo
7.
Cancer Res ; 78(17): 4853-4864, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898994

RESUMO

p62 is a receptor that facilitates selective autophagy by interacting simultaneously with cargoes and LC3 protein on the autophagosome to maintain cellular homeostasis. However, the regulatory mechanism(s) behind this process and its association with breast cancer remain to be elucidated. Here, we report that Flightless-I (FliI), a novel p62-interacting protein, promotes breast cancer progression by impeding selective autophagy. FliI was highly expressed in clinical breast cancer samples, and heterozygous deletion of FliI retarded the development of mammary tumors in PyVT mice. FliI induced p62-recruited cargoes into Triton X-100 insoluble fractions (TI) to form aggregates, thereby blocking p62 recognition of LC3 and hindering p62-dependent selective autophagy. This function of Flil was reinforced by Akt-mediated phosphorylation at Ser436 and inhibited by phosphorylation of Ulk1 at Ser64. Obstruction of autophagic clearance of p62-recruited cargoes by FliI was associated with the accumulation of oxidative damage on proteins and DNA, which could contribute to the development of cancer. Heterozygous knockout of FliI facilitated selectively autophagic clearance of aggregates, abatement of ROS levels, and protein oxidative damage, ultimately retarding mammary cancer progression. In clinical breast cancer samples, Akt-mediated phosphorylation of FliI at Ser436 negatively correlated with long-term prognosis, while Ulk1-induced FliI phosphorylation at Ser64 positively correlated with clinical outcome. Together, this work demonstrates that FliI functions as a checkpoint protein for selective autophagy in the crosstalk between FliI and p62-recruited cargoes, and its phosphorylation may serve as a prognostic marker for breast cancer.Significance: Flightless-I functions as a checkpoint protein for selective autophagy by interacting with p62 to block its recognition of LC3, leading to tumorigenesis in breast cancer.Cancer Res; 78(17); 4853-64. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Ligação a RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , Adulto , Idoso , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Pessoa de Meia-Idade , Fosforilação , Ligação Proteica/genética , Transativadores
8.
Mol Cell ; 69(3): 480-492.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395065

RESUMO

Fatty acid oxidation (FAO) is crucial for cells to overcome metabolic stress by providing ATP and NADPH. However, the mechanism by which FAO is regulated in tumors remains elusive. Here we show that Nur77 is required for the metabolic adaptation of melanoma cells by protecting FAO. Glucose deprivation activates ERK2 to phosphorylate and induce Nur77 translocation to the mitochondria, where Nur77 binds to TPß, a rate-limiting enzyme in FAO. Although TPß activity is normally inhibited by oxidation under glucose deprivation, the Nur77-TPß association results in Nur77 self-sacrifice to protect TPß from oxidation. FAO is therefore able to maintain NADPH and ATP levels and prevent ROS increase and cell death. The Nur77-TPß interaction further promotes melanoma metastasis by facilitating circulating melanoma cell survival. This study demonstrates a novel regulatory function of Nur77 with linkage of the FAO-NADPH-ROS pathway during metabolic stress, suggesting Nur77 as a potential therapeutic target in melanoma.


Assuntos
Melanoma/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Sobrevivência Celular/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
9.
Sci Rep ; 8(1): 536, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323121

RESUMO

Cell surface glucose regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone, was suggested to be a cancer stem cell marker, but the influence of this molecule on cancer stemness is poorly characterized. In this study, we developed a mass spectrometry platform to detect the endogenous interactome of GRP78 and investigated its role in cancer stemness. The interactome results showed that cell surface GRP78 associates with multiple molecules. The influence of cell population heterogeneity of head and neck cancer cell lines (OECM1, FaDu, and BM2) according to the cell surface expression levels of GRP78 and the GRP78 interactome protein, Progranulin, was investigated. The four sorted cell groups exhibited distinct cell cycle distributions, asymmetric/symmetric cell divisions, and different relative expression levels of stemness markers. Our results demonstrate that cell surface GRP78 promotes cancer stemness, whereas drives cells toward a non-stemlike phenotype when it chaperones Progranulin. We conclude that cell surface GRP78 is a chaperone exerting a deterministic influence on cancer stemness.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Choque Térmico/metabolismo , Células-Tronco Neoplásicas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Proteínas de Choque Térmico/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Neoplásicas/citologia , Progranulinas , Ligação Proteica
10.
Proteomics Clin Appl ; 12(2)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29350471

RESUMO

PURPOSE: Saliva is an attractive sample source for the biomarker-based testing of several diseases, especially oral cancer. Here, we sought to apply multiplexed LC-MRM-MS to precisely quantify 90 disease-related proteins and assess their intra- and interindividual variability in saliva samples from healthy donors. EXPERIMENTAL DESIGN: We developed two multiplexed LC-MRM-MS assays for 122 surrogate peptides representing a set of disease-related proteins. Saliva samples were collected from 10 healthy volunteers at three different time points (Day 1 morning and afternoon, and Day 2 morning). Each sample was spiked with a constant amount of a 15 N-labeled protein and analyzed by MRM-MS in triplicate. Quantitative results from LC-MRM-MS were calculated by single-point quantification with reference to a known amount of internal standard (heavy peptide). RESULTS: The CVs for assay reproducibility and technical variation were 13 and 11%, respectively. The average concentrations of the 99 successfully quantified proteins ranged from 0.28 ± 0.58 ng mL-1 for profilin-2 (PFN2) to 8.55 ±8.96 µg mL-1 for calprotectin (S100A8). For the 90 proteins detectable in >50% of samples, the average CVs for intraday, interday, intraindividual, and interindividual samples were 38%, 43%, 45%, and 69%, respectively. The fluctuations of most target proteins in individual subjects were found to be within ± twofold. CONCLUSIONS AND CLINICAL RELEVANCE: Our study elucidated the intra- and interindividual variability of 90 disease-related proteins in saliva samples from healthy donors. The findings may facilitate the further development of salivary biomarkers for oral and systemic diseases.


Assuntos
Voluntários Saudáveis , Proteômica/métodos , Proteínas e Peptídeos Salivares/metabolismo , Adulto , Cromatografia Líquida , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Fatores de Tempo
11.
Mol Cell Proteomics ; 16(10): 1829-1849, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28821604

RESUMO

Oral cancer is one of the most common cancers worldwide, and there are currently no biomarkers approved for aiding its management. Although many potential oral cancer biomarkers have been discovered, very few have been verified in body fluid specimens in parallel to evaluate their clinical utility. The lack of appropriate multiplexed assays for chosen targets represents one of the bottlenecks to achieving this goal. In the present study, we develop a peptide immunoaffinity enrichment-coupled multiple reaction monitoring-mass spectrometry (SISCAPA-MRM) assay for verifying multiple reported oral cancer biomarkers in saliva. We successfully produced 363 clones of mouse anti-peptide monoclonal antibodies (mAbs) against 36 of 49 selected targets, and characterized useful mAbs against 24 targets in terms of their binding affinity for peptide antigens and immuno-capture ability. Comparative analyses revealed that an equilibrium dissociation constant (KD ) cut-off value < 2.82 × 10-9 m could identify most clones with an immuno-capture recovery rate >5%. Using these mAbs, we assembled a 24-plex SISCAPA-MRM assay and optimized assay conditions in a 25-µg saliva matrix background. This multiplexed assay showed reasonable precision (median coefficient of variation, 7.16 to 32.09%), with lower limits of quantitation (LLOQ) of <10, 10-50, and >50 ng/ml for 14, 7 and 3 targets, respectively. When applied to a model saliva sample pooled from oral cancer patients, this assay could detect 19 targets at higher salivary levels than their LLOQs. Finally, we demonstrated the utility of this assay for quantification of multiple targets in individual saliva samples (20 healthy donors and 21 oral cancer patients), showing that levels of six targets were significantly altered in cancer compared with the control group. We propose that this assay could be used in future studies to compare the clinical utility of multiple oral cancer biomarker candidates in a large cohort of saliva samples.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/diagnóstico , Espectrometria de Massas/métodos , Neoplasias Bucais/diagnóstico , Proteômica/métodos , Saliva/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Biomarcadores Tumorais/metabolismo , Simulação por Computador , Humanos , Imunoensaio , Limite de Detecção , Camundongos , Peptídeos/imunologia
12.
Sci Rep ; 7(1): 1370, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465586

RESUMO

In Photofrin-mediated photodynamic therapy (PDT), cell fate can be modulated by the subcellular location of Photofrin. PDT triggers oxidative damage to target cells, including the methionine (Met) oxidation of proteins. Here, we developed a new Met-containing peptide enrichment protocol combined with SILAC-based quantitative proteomics, and used this approach to explore the global Met oxidation changes of proteins in PDT-treated epidermoid carcinoma A431 cells preloaded with Photofrin at the plasma membrane, ER/Golgi, or ubiquitously. We identified 431 Met-peptides corresponding to 302 proteins that underwent severe oxidation upon PDT and observed overrepresentation of proteins related to the cell surface, plasma membrane, ER, Golgi, and endosome under all three conditions. The most frequently oxidized Met-peptide sequence was "QAMXXMM-E/G/M-S/G-A/G/F-XG". We also identified several hundred potential Photofrin-binding proteins using affinity purification coupled with LC-MS/MS, and confirmed the bindings of EGFR and cathepsin D with Photofrin. The enzyme activities of both proteins were significantly reduced by Photofrin-PDT. Our results shed light on the global and site-specific changes in Met-peptide oxidation among cells undergoing Photofrin-PDT-mediated oxidative stress originating from distinct subcellular sites, and suggest numerous potential Photofrin-binding proteins. These findings provide new insight into the molecular targets through which Photofrin-PDT has diverse effects on target cells.


Assuntos
Éter de Diematoporfirina/administração & dosagem , Metionina/metabolismo , Oxirredução , Estresse Oxidativo , Fotoquimioterapia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Peptídeos/metabolismo , Proteômica
13.
Mol Biol Cell ; 28(8): 1054-1065, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28228547

RESUMO

Nonmuscle myosin II (NM-II) is an important motor protein involved in cell migration. Incorporation of NM-II into actin stress fiber provides a traction force to promote actin retrograde flow and focal adhesion assembly. However, the components involved in regulation of NM-II activity are not well understood. Here we identified a novel actin stress fiber-associated protein, LIM and calponin-homology domains 1 (LIMCH1), which regulates NM-II activity. The recruitment of LIMCH1 into contractile stress fibers revealed its localization complementary to actinin-1. LIMCH1 interacted with NM-IIA, but not NM-IIB, independent of the inhibition of myosin ATPase activity with blebbistatin. Moreover, the N-terminus of LIMCH1 binds to the head region of NM-IIA. Depletion of LIMCH1 attenuated myosin regulatory light chain (MRLC) diphosphorylation in HeLa cells, which was restored by reexpression of small interfering RNA-resistant LIMCH1. In addition, LIMCH1-depleted HeLa cells exhibited a decrease in the number of actin stress fibers and focal adhesions, leading to enhanced cell migration. Collectively, our data suggest that LIMCH1 plays a positive role in regulation of NM-II activity through effects on MRLC during cell migration.


Assuntos
Movimento Celular/fisiologia , Proteínas com Domínio LIM/metabolismo , Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Células HeLa , Humanos , Cadeias Leves de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Fosforilação , Fibras de Estresse/metabolismo , Fibras de Estresse/fisiologia
14.
J Proteomics ; 157: 40-51, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28192239

RESUMO

Plentiful studies have established a close association between aberrant phosphorylation and hepatocellular carcinoma (HCC). Here, we applied a quantitative phosphoproteomics platform combining dimethylation labeling and online 3D strong cation exchange chromatography (SCX)-titanium oxide (TiO2)/RP-LTQ-Orbitrap to compare phosphoproteomes between three pairs of HCC tissues and non-tumor counterparts. This analysis yielded 7868 quantifiable phosphopeptides and numerous up- or down-regulated candidates. Increased phosphorylation of LMNA and NIPA was confirmed using specific antibodies. To expand our verification capability, we evaluated the use of LTQ-Orbitrap run in SIM/Accurate inclusion mass screening (AIMS) mode with a super-SILAC mixture as an internal standard to quantify a subset of phosphopeptide candidates in HCC tissue samples. In sample I used for discovery experiment, we successfully quantified 32 (in SIM mode) and 30 (in AIMS mode) phosphopeptides with median coefficients of variation (CVs) of 7.5% and 8.3%, respectively. When the assay was applied to other three pairs of HCC specimens for verification experiment, 40 target phosphopeptides were quantified reliably (~7.5% CV), and more than half of them were differentially expressed between tumor and adjacent non-tumor tissues. Collectively, these results indicate the feasibility of using super-SILAC mix-SIM/AIMS assays for targeted verification of phosphopeptides discovered by large-scale phosphoproteome analyses of HCC specimens. SIGNIFICANCE: In this study, we developed a strategy for conducting both discovery and targeted verification of deregulated phosphoproteins in HCC tissue specimens on LTQ-Orbitrap. This strategy allowed us to generate a quantitative HCC tissue phosphoproteome dataset containing significantly deregulated phosphoproteins that represents a valuable resource for the identification of potential HCC biomarkers and/or therapeutic targets. Furthermore, our proof-of-concept experiments demonstrated the feasibility of applying LTQ-Orbitrap, operated in SIM/AIMS mode, to multiplex and targeted verification of phosphopeptides in individual tissue specimens using a super-SILAC mix as an internal phosphopeptide standard. This method could be readily applied to verify dozens of phosphopeptide candidates in a larger HCC sample set.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Carcinoma Hepatocelular/patologia , Cromatografia por Troca Iônica/métodos , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Neoplasias/isolamento & purificação , Fosfoproteínas/isolamento & purificação , Fosforilação , Proteoma/isolamento & purificação
15.
Nat Commun ; 8: 14420, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240261

RESUMO

Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting enzyme in gluconeogenesis, to increase gluconeogenesis and suppress glycolysis, resulting in ATP depletion and cell growth arrest. However, PEPCK1 becomes labile after sumoylation and is degraded via ubiquitination, which is augmented by the p300 acetylation of ubiquitin-conjugating enzyme 9 (Ubc9). Although Nur77 attenuates sumoylation and stabilizes PEPCK1 via impairing p300 activity and preventing the Ubc9-PEPCK1 interaction, Nur77 is silenced in HCC samples due to Snail-mediated DNA methylation of the Nur77 promoter. Our study reveals a unique mechanism to suppress HCC by switching from glycolysis to gluconeogenesis through Nur77 antagonism of PEPCK1 degradation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Gluconeogênese , Neoplasias Hepáticas/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Sumoilação , Acetilação , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Regulação para Baixo/genética , Proteína p300 Associada a E1A/metabolismo , Estabilidade Enzimática , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Proteólise , Fatores de Transcrição da Família Snail/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
Nucleic Acids Res ; 45(1): 271-287, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899653

RESUMO

Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.


Assuntos
Enterovirus/genética , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/genética , Células Musculares/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Enterovirus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Sítios Internos de Entrada Ribossomal , Lisina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Musculares/virologia , Mutação , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Ubiquitinação
17.
Sci Rep ; 6: 37642, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886215

RESUMO

Salmonella enterica serovars Choleraesuis and Typhimurium are among the non-typhoid Salmonella serovars that are important zoonotic pathogens. In clinical observation, S. Typhimurium typically causes diarrheal diseases; however, S. Choleraesuis shows high predilection to cause bacteremia. The mechanism why S. Choleraesuis is more invasive to humans remains unknown. In this study, we compared the S. Typhimurium LT2 and S. Choleraesuis SC-B67 proteomes through stable isotope labeling of amino acid in cell culture (SILAC). In SILAC, the expression of many virulence proteins in two type III secretion systems (T3SSs) were significantly higher in S. Choleraesuis than in S. Typhimurium. Similar differences were also found at the transcriptional level. Compared to S. Typhimurium, S. Choleraesuis showed a higher penetration level to Caco-2 (>100-fold) and MDCK (>10-fold) monolayers. In mice after oral challenge, the invasion of spleen and liver was also higher in S. Choleraesuis than in S. Typhimurium. The transcription of hilD in S. Choleraesuis was increased in physiological (1 mM) or high (10 mM) concentrations of Mg2+, but not in low (8 µM) concentration. We conclude that S. Choleraesuis showed hyperinvasiveness in cellular as well as mouse models due to hyperexpression of T3SS genes.


Assuntos
Salmonella enterica/metabolismo , Salmonella enterica/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Ácidos/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Cães , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Células HeLa , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Células Madin Darby de Rim Canino , Magnésio/farmacologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Fatores de Virulência/metabolismo
18.
Sci Rep ; 5: 11689, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26138061

RESUMO

The profiling of cancer cell secretomes is considered to be a good strategy for identifying cancer-related biomarkers, but few studies have focused on identifying low-molecular-mass (LMr) proteins (<15 kDa) in cancer cell secretomes. Here, we used tricine-SDS-gel-assisted fractionation and LC-MS/MS to systemically identify LMr proteins in the secretomes of five oral cavity squamous cell carcinoma (OSCC) cell lines. Cross-matching of these results with nine OSCC tissue transcriptome datasets allowed us to identify 33 LMr genes/proteins that were highly upregulated in OSCC tissues and secreted/released from OSCC cells. Immunohistochemistry and quantitative real-time PCR were used to verify the overexpression of two candidates, HMGA2 and MIF, in OSCC tissues. The overexpressions of both proteins were associated with cervical metastasis, perineural invasion, deeper tumor invasion, higher overall stage, and a poorer prognosis for post-treatment survival. Functional assays further revealed that both proteins promoted the migration and invasion of OSCC cell lines in vitro. Collectively, our data indicate that the tricine-SDS-gel/LC-MS/MS approach can be used to efficiently identify LMr proteins from OSCC cell secretomes, and suggest that HMGA2 and MIF could be potential tissue biomarkers for OSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteína HMGA2/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neoplasias Bucais/metabolismo , Proteoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/diagnóstico , Linhagem Celular Tumoral , Movimento Celular , Feminino , Proteína HMGA2/química , Humanos , Oxirredutases Intramoleculares/química , Fatores Inibidores da Migração de Macrófagos/química , Masculino , Pessoa de Meia-Idade , Peso Molecular , Neoplasias Bucais/diagnóstico , Invasividade Neoplásica , Prognóstico , Adulto Jovem
19.
J Proteome Res ; 13(6): 2818-29, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24787432

RESUMO

The ability to discriminate lung cancer malignant pleural effusion (LC-MPE) from benign pleural effusion has profound implications for the therapy and prognosis of lung cancer. Here, we established a pipeline to verify potential biomarkers for this purpose. In the discovery phase, label-free quantification was performed for the proteome profiling of exudative pleural effusion in order to select 34 candidate biomarkers with significantly elevated levels in LC-MPE. In the verification phase, signature peptides for 34 candidates were first confirmed by accurate inclusion mass screening (AIMS). To quantify the candidates in PEs, multiple reaction monitoring mass spectrometry (MRM-MS) with stable isotope-labeled standards (SIS) peptides was performed for the 34 candidate biomarkers using the QconCAT approach for the generation of the SIS peptides. The results of the MRM assay were used to prioritize candidates based on their discriminatory power in 82 exudative PE samples. The five potential biomarkers (ALCAM, CDH1, MUC1, SPINT1, and THBS4; AUC > 0.7) and one three-marker panel (SPINT1/SVEP1/THBS4; AUC = 0.95) were able to effectively differentiate LC-MPE from benign PE. Collectively, these results demonstrate that our pipeline is a feasible platform for verifying potential biomarkers for human diseases.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/metabolismo , Derrame Pleural Maligno/metabolismo , Adenocarcinoma/diagnóstico , Adenocarcinoma/secundário , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Biomarcadores Tumorais/química , Estudos de Casos e Controles , Diagnóstico Diferencial , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Derrame Pleural Maligno/diagnóstico , Proteoma/química , Proteoma/metabolismo , Proteômica , Curva ROC
20.
J Proteomics ; 94: 186-201, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24080422

RESUMO

Cancer cell secretome profiling has been shown to be a promising strategy for identifying potential body fluid-accessible cancer biomarkers and therapeutic targets. However, very few reports have investigated low-molecular-mass (LMr) proteins (<15kDa) in the cancer cell secretome. In the present study, we applied tricine-SDS-gel-assisted fractionation in conjunction with LC-MS/MS to systemically identify LMr proteins in the secretomes of three nasopharyngeal carcinoma (NPC) cell lines. We examined two NPC tissue transcriptome datasets to identify LMr genes/proteins that are highly upregulated in NPC tissues and also secreted/released from NPC cells, obtaining 35 candidates. We verified the overexpression of four targets (LSM2, SUMO1, RPL22, and CCL5) in NPC tissues by immunohistochemistry and demonstrated elevated plasma levels of two targets (S100A2 and CCL5) in NPC patients by ELISA. Notably, plasma CCL5 showed good power (AUC 0.801) for discriminating NPC patients from healthy controls. Additionally, functional assays revealed that CCL5 promoted migration of NPC cells, an effect that was effectively blocked by CCL5-neutralizing antibodies and maraviroc, a CCL5 receptor antagonist. Collectively, our data indicate the feasibility of the tricine-SDS-gel/LC-MS/MS approach for efficient identification of LMr proteins from cancer cell secretomes, and suggest that CCL5 is a potential plasma biomarker and therapeutic target for NPC. BIOLOGICAL SIGNIFICANCE: Both LMr proteome and cancer cell secretome represent attractive reservoirs for discovery of cancer biomarkers and therapeutic targets. Our present study provides evidence for the practicality of using the tricine-SDS-PAGE/LC-MS/MS approach for in-depth identification of LMr proteins from the NPC cell secretomes, leading to the discovery of CCL5 as a potential plasma biomarker and therapeutic target for NPC. We believe that the modified GeLC-MS/MS approach used here can be further applied to explore extremely low-abundance, extracellular LMr proteins with important biological functions in other cell lines and biospecimens.


Assuntos
Biomarcadores Tumorais/sangue , Quimiocina CCL5/sangue , Neoplasias Nasofaríngeas/sangue , Proteínas de Neoplasias/sangue , Proteômica/métodos , Carcinoma , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA