Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neuroscience ; 552: 89-99, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909675

RESUMO

Chronic ethanol consumption increased extracellular glutamate concentrations in several reward brain regions. Glutamate homeostasis is regulated in majority by astrocytic glutamate transporter 1 (GLT-1) as well as the interactive role of cystine/glutamate antiporter (xCT). In this study, we aimed to determine the attenuating effects of a novel beta-lactam MC-100093, lacking the antibacterial properties, on ethanol consumption and GLT-1 and xCT expression in the subregions of nucleus accumbens (NAc core and NAc shell) and medial prefrontal cortex (Infralimbic, mPFC-IL and Prelimbic, mPFC-PL) in male and female alcohol-preferring (P) rats. Female and male rats were exposed to free access to ethanol (15% v/v) and (30% v/v) and water for five weeks, and on Week 6, rats were administered 100 mg/kg (i.p) of MC-100093 or saline for five days. MC-100093 reduced ethanol consumption in both male and female P rats from Day 1-5. Additionally, MC-100093 upregulated GLT-1 and xCT expression in the mPFC and NAc subregions as compared to ethanol-saline groups in female and male rats. Chronic ethanol intake reduced GLT-1 and xCT expression in the IL and PL in female and male rats, except there was no reduction in GLT-1 expression in the mPFC-PL in female rats. Although, MC-100093 upregulated GLT-1 and xCT expression in the subregions of NAc, we did not observe any reduction in GLT-1 and xCT expression with chronic ethanol intake in female rats. These findings strongly suggest that MC-100093 treatment effectively reduced ethanol intake and upregulated GLT-1 and xCT expression in the mPFC and NAc subregions in male and female P rats.

2.
Saudi Pharm J ; 32(7): 102108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38868175

RESUMO

Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-ß) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-ß mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.

3.
Nat Commun ; 15(1): 2862, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580648

RESUMO

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.


Assuntos
Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/genética , Proteína BRCA2/genética , DNA/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos
4.
Clin Epigenetics ; 16(1): 3, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172923

RESUMO

BACKGROUND: Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS: In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS: MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS: MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.


Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Camundongos , Ratos , Animais , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Decitabina/farmacologia , Metilação de DNA , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/genética , Apoptose
5.
Mol Cancer Ther ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064712

RESUMO

Anticancer nucleosides are effective against solid tumors and hematological malignancies, but typically are prone to nucleoside metabolism resistance mechanisms. Using a nucleoside-specific multiplexed high-throughput screening approach, we discovered 4'-ethynyl-2'-deoxycytidine (EdC) as a third-generation anticancer nucleoside prodrug with preferential activity against diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). EdC requires deoxycytidine kinase (DCK) phosphorylation for its activity and induced replication fork arrest and accumulation of cells in S-phase, indicating it acts as a chain terminator. A 2.1Å co-crystal structure of DCK bound to EdC and UDP reveals how the rigid 4'-alkyne of EdC fits within the active site of DCK. Remarkably, EdC was resistant to cytidine deamination and SAMHD1 metabolism mechanisms and exhibited higher potency against ALL compared to FDA approved nelarabine. Finally, EdC was highly effective against DLBCL tumors and B-ALL in vivo. These data characterize EdC as a pre-clinical nucleoside prodrug candidate for DLBCL and ALL.

6.
Res Sq ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066268

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors represent a promising new class of agents that have demonstrated efficacy in treating various cancers, particularly those that carry BRCA1/2 mutations. The cancer associated BRCA1/2 mutations disrupt DNA double strand break (DSB) repair by homologous recombination (HR). PARP inhibitors (PARPis) have been applied to trigger synthetic lethality in BRCA1/2-mutated cancer cells by promoting the accumulation of toxic DSBs. Unfortunately, resistance to PARPis is common and can occur through multiple mechanisms, including the restoration of HR and/or the stabilization of replication forks. To gain a better understanding of the mechanisms underlying PARPi resistance, we conducted an unbiased CRISPR-pooled genome-wide library screen to identify new genes whose deficiency confers resistance to the PARPi olaparib. Our study revealed that ZNF251, a transcription factor, is a novel gene whose haploinsufficiency confers PARPi resistance in multiple breast and ovarian cancer lines harboring BRCA1 mutations. Mechanistically, we discovered that ZNF251 haploinsufficiency leads to constitutive stimulation of DNA-PKcs-dependent non-homologous end joining (NHEJ) repair of DSBs and DNA-PKcs-mediated fork protection in BRCA1-mutated cancer cells (BRCA1mut + ZNF251KD). Moreover, we demonstrated that DNA-PKcs inhibitors can restore PARPi sensitivity in BRCA1mut + ZNF251KD cells ex vivo and in vivo. Our findings provide important insights into the mechanisms underlying PARPi resistance and highlight the unexpected role of DNA-PKcs in this phenomenon.

7.
Blood ; 141(19): 2372-2389, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580665

RESUMO

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Assuntos
Proteína BRCA1 , Dano ao DNA , Leucemia , Animais , Camundongos , Proteína BRCA2 , DNA/metabolismo , Leucemia/enzimologia , Leucemia/genética , DNA Polimerase teta
8.
J Pharmacol Exp Ther ; 383(3): 208-216, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36153003

RESUMO

Chronic ethanol exposure affects the glutamatergic system in several brain reward regions including the nucleus accumbens (NAc). Our laboratory has shown that chronic exposure to ethanol reduced the expression of glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger (xCT) and, as a result, increased extracellular glutamate concentrations in the NAc of alcohol-preferring (P) rats. Moreover, previous studies from our laboratory reported that chronic ethanol intake altered the expression of certain metabotropic glutamate receptors in the brain. In addition to central effects, chronic ethanol consumption induced liver injury, which is associated with steatohepatitis. In the present study, we investigated the effects of chronic ethanol consumption in the brain and liver. Male P rats had access to a free choice of ethanol and water bottles for five weeks. Chronic ethanol consumption reduced GLT-1 and xCT expression in the NAc shell but not in the NAc core. Furthermore, chronic ethanol consumption increased fat droplet content as well as peroxisome proliferator-activated receptor alpha (PPAR-α) and GLT-1 expression in the liver. Importantly, treatment with the novel beta-lactam compound, MC-100093, reduced ethanol drinking behavior and normalized the levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver. These findings suggest that MC-100093 may be a potential lead compound to attenuate ethanol-induced dysfunction in the glutamatergic system and liver injury. SIGNIFICANCE STATEMENT: This study identified a novel beta-lactam, MC-100093, that has demonstrated upregulatory effects on GLT-1. MC-100093 reduced ethanol drinking behavior and normalized levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver.


Assuntos
Transportador 2 de Aminoácido Excitatório , beta-Lactamas , Animais , Masculino , Ratos , Consumo de Bebidas Alcoólicas/metabolismo , beta-Lactamas/farmacologia , Etanol/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Núcleo Accumbens , Receptores Ativados por Proliferador de Peroxissomo
9.
Front Oncol ; 12: 879457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669422

RESUMO

Tirbanibulin (KX2-391, KX-01), a dual non-ATP (substrate site) Src kinase and tubulin-polymerization inhibitor, demonstrated a universal anti-cancer activity for variety of cancer types. The notion that KX2-391 is a highly selective Src kinase inhibitor have been challenged by recent reports on the activities of this drug against FLT3-ITD mutations in some leukemic cell lines. Therefore, we hypothesized that analogues of KX2-391 may inhibit oncogenic kinases other than Src. A set of 4-aroylaminophenyl-N-benzylacetamides were synthesized and found to be more active against leukemia cell lines compared to solid tumor cell lines. N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-4-chlorobenzamide (4e) exhibited activities at IC50 0.96 µM, 1.62 µM, 1.90 µM and 4.23 µM against NB4, HL60, MV4-11 and K562 leukemia cell lines, respectively. We found that underlying mechanisms of 4e did not include tubulin polymerization or Src inhibition. Such results interestingly suggested that scaffold-hopping of KX2-391 may change the two main underlying cytotoxic mechanisms (Src and tubulin). Kinase profiling using two methods revealed that 4e significantly reduces the activities of some other potent oncogenic kinases like the MAPK member ERK1/2 (>99%) and it also greatly upregulates the pro-apoptotic c-Jun kinase (84%). This research also underscores the importance of thorough investigation of total kinase activities as part of the structure-activity relationship studies.

10.
Bioorg Med Chem ; 42: 116251, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116381

RESUMO

Selective inhibition of histone deacetylases (HDACs) is an important strategy in the field of anticancer drug discovery. However, lack of inhibitors that possess high selectivity toward certain HDACs isozymes is associated with adverse side effects that limits their clinical applications. We have initiated a collaborative initiatives between multi-institutions aimed at the discovery of novel and selective HDACs inhibitors. To this end, a phenotypic screening of an in-house pilot library of about 70 small molecules against various HDAC isozymes led to the discovery of five compounds that displayed varying degrees of HDAC isozyme selectivity. The anticancer activities of these molecules were validated using various biological assays including transcriptomic studies. Compounds 15, 14, and 19 possessed selective inhibitory activity against HDAC5, while 28 displayed selective inhibition of HDAC1 and HDAC2. Compound 22 was found to be a selective inhibitor for HDAC3 and HDAC9. Importantly, we discovered a none-hydroxamate based HDAC inhibitor, compound 28, representing a distinct chemical probe of HDAC inhibitors. It contains a trifluoromethyloxadiazolyl moiety (TFMO) as a non-chelating metal-binding group. The new compounds showed potent anti-proliferative activity when tested against MCF7 breast cancer cell line, as well as increased acetylation of histones and induce cells apoptosis. The new compounds apoptotic effects were validated through the upregulation of proapoptotic proteins caspases3 and 7 and downregulation of the antiapoptotic biomarkers C-MYC, BCL2, BCL3 and NFĸB genes. Furthermore, the new compounds arrested cell cycle at different phases, which was confirmed through downregulation of the CDK1, 2, 4, 6, E2F1 and RB1 proteins. Taken together, our findings provide the foundation for the development of new chemical probes as potential lead drug candidates for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
11.
ACS Med Chem Lett ; 11(11): 2156-2164, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33214824

RESUMO

The dual PI3Kα/ m TOR inhibitors represent a promising molecularly targeted therapy for cancer. Here, we documented the discovery of new 2,4-disubstituted quinazoline analogs as potent dual PI3Kα/sm TOR inhibitors. Our structure based chemistry endeavor yielded six excellent compounds 9e, 9f, 9g, 9k, 9m, and 9o with single/double digit nanomolar IC50 values against both enzymes and acceptable aqueous solubility and stability to oxidative metabolism. One of those analogs, 9m, possessed a sulfonamide substituent, which has not been described for this chemical scaffold before. The short direct synthetic routes, structure-activity relationship, in vitro 2D cell culture viability assays against normal fibroblasts and 3 breast cancer cell lines, and in vitro 3D culture viability assay against MCF7 cells for this series are described.

12.
Med Chem Res ; 29(6): 962-978, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33071527

RESUMO

The successful use of PARP1 inhibitors like olaparib (Loparza®) in the treatment of BRCA1/2- deficient breast cancer has provided clinical proof of concept for applying personalized medicine based on synthetic lethality to the treatment of cancer. Unfortunately, all marketed PARP1 inhibitors act by competing with the cofactor NAD+ and resistance is already developing to this anti-cancer mechanism. Allosteric PARP1 inhibitors could provide a means of overcoming this resistance. A high throughput screen performed by Tulin et al. identified 5F02 as an allosteric PARP inhibitor that acts by preventing the enzymatic activation of PARP1 by histone H4. 5F02 demonstrated anti-cancer activity in several cancer cell lines and was more potent than olaparib and synergistic with olaparib in these assays. In the present study we explored the structure-activity relationship of 5F02 by preparing analogs that possessed structural variation in four regions of the chemical scaffold. Our efforts led to lead molecule 7, which demonstrated potent anti-clonogenic activity against BRCA-deficient NALM6 leukemia cells in culture and a therapeutic index for the BRCA-deficient cells over their BRCA-proficient isogenic counterparts.

13.
Biochem Pharmacol ; 167: 149-162, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30880062

RESUMO

In our previous studies of the molecular mechanisms of poly(ADP-ribose) polymerase 1 (PARP-1)-mediated transcriptional regulation we identified a novel class of PARP-1 inhibitors targeting the histone-dependent route of PARP-1 activation. Because histone-dependent activation is unique to PARP-1, non-NAD-like PARP-1 inhibitors have the potential to bypass the off-target effects of classical NAD-dependent PARP-1 inhibitors, such as olaparib, veliparib, and rucaparib. Furthermore, our recently published studies demonstrate that, compared to NAD-like PARP-1 inhibitors that are used clinically, the non-NAD-like PARP-1 inhibitor 5F02 exhibited superior antitumor activity in cell and animal models of human prostate cancer (PC). In this study, we further evaluated the antitumor activity of 5F02 and several of its novel analogues against PC cells. In contrast to NAD-like PARP-1 inhibitors, non-NAD-like PARP-1 inhibitors demonstrated efficacy against androgen-dependent and -independent routes of androgen receptor signaling activation. Our experiments reveal that methylation of the quaternary ammonium salt and the presence of esters were critical for the antitumor activity of 5F02 against PC cells. In addition, we examined the role of a related regulatory protein of PARP-1, called Poly(ADP-ribose) glycohydrolase (PARG), in prostate carcinogenesis. Our study reveals that PARG expression is severely disrupted in PC cells, which is associated with decreased integrity and localization of Cajal bodies (CB). Overall, the results of our study strengthen the justification for using non-NAD-like PARP-1 inhibitors as a novel therapeutic strategy for the treatment of advanced prostate cancer.


Assuntos
Antineoplásicos/farmacologia , NAD , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/enzimologia , Animais , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia
15.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454645

RESUMO

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Bioorg Med Chem Lett ; 28(13): 2270-2274, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803730

RESUMO

The synthesis of steroid hormones is critical to human physiology and improper regulation of either the synthesis of these key molecules or activation of the associated receptors can lead to disease states. This has led to intense interest in developing compounds capable of modulating the synthesis of steroid hormones. Compounds capable of inhibiting Cyp19 (Aromatase), a key enzyme in the synthesis of estrogens, have been successfully employed as breast cancer therapies, while inhibitors of Cyp17 (17α-hydroxylase-17,20-lyase), a key enzyme in the synthesis of glucocorticoids, mineralocorticoids and steroidal sex hormones, are a key component of prostate cancer therapy. Inhibition of CYP17 has also been suggested as a possible target for the treatment of Cushing Syndrome and Metabolic Syndrome. We have identified two novel series of stilbene based CYP17 inhibitors and demonstrated that exemplary compounds in these series have pharmacokinetic properties consistent with orally delivered drugs. These findings suggest that compounds in these classes may be useful for the treatment of diseases and conditions associated with improper regulation of glucocorticoids synthesis and glucocorticoids receptor activation.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacocinética , Desenho de Fármacos , Piperazinas/farmacocinética , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Estilbenos/farmacocinética , Animais , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Cobaias , Meia-Vida , Microssomos Hepáticos/metabolismo , Piperazinas/síntese química , Piperazinas/química , Estereoisomerismo , Estilbenos/síntese química , Estilbenos/química , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 27(14): 3117-3122, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28571824

RESUMO

PI3Kα/mTOR ATP-competitive inhibitors are considered as one of the promising molecularly targeted cancer therapeutics. Based on lead compound A from the literature, two similar series of 2-substituted-4-morpholino-pyrido[3,2-d]pyrimidine and pyrido[2,3-d]pyrimidine analogs were designed and synthesized as PI3Kα/mTOR dual inhibitors. Interestingly, most of the series gave excellent inhibition for both enzymes with IC50 values ranging from single to double digit nM. Unlike many PI3Kα/mTOR dual inhibitors, our compounds displayed selectivity for PI3Kα. Based on its potent enzyme inhibitory activity, selectivity for PI3Kα and good therapeutic index in 2D cell culture viability assays, compound 4h was chosen to be evaluated in 3D culture for its IC50 against MCF7 breast cancer cells as well as for docking studies with both enzymes.


Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinas/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Concentração Inibidora 50 , Células MCF-7 , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína , Pirimidinas/síntese química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
18.
J Cell Biochem ; 118(10): 3268-3280, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28295503

RESUMO

Agnoprotein is an important regulatory protein of the human polyoma JC virus (JCV) and plays critical roles during the viral replication cycle. It forms highly stable dimers and oligomers through its Leu/Ile/Phe-rich domain, which is important for the stability and function of the protein. We recently resolved the partial 3D structure of this protein by NMR using a synthetic peptide encompassing amino acids Thr17 to Gln52, where the Leu/Ile/Phe- rich region was found to adopt a major alpha-helix conformation spanning amino acids 23-39. Here, we report the resolution of the 3D structure of full-length JCV agnoprotein by NMR, which not only confirmed the existence of the previously reported major α-helix domain at the same position but also revealed the presence of an additional minor α-helix region spanning amino acid residues Leu6 to lys13. The remaining regions of the protein adopt an intrinsically unstructured conformation. J. Cell. Biochem. 118: 3268-3280, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Vírus JC/química , Ressonância Magnética Nuclear Biomolecular , Proteínas Virais Reguladoras e Acessórias/química , Humanos , Estrutura Secundária de Proteína
19.
Oncotarget ; 8(68): 112184-112198, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348817

RESUMO

Reprogramming of mitochondrial functions sustains tumor growth and may provide therapeutic opportunities. Here, we targeted the protein folding environment in mitochondria by coupling a purine-based inhibitor of the molecular chaperone Heat Shock Protein-90 (Hsp90), PU-H71 to the mitochondrial-targeting moiety, triphenylphosphonium (TPP). Binding of PU-H71-TPP to ADP-Hsp90, Hsp90 co-chaperone complex or mitochondrial Hsp90 homolog, TRAP1 involved hydrogen bonds, π-π stacking, cation-π contacts and hydrophobic interactions with the surrounding amino acids in the active site. PU-H71-TPP selectively accumulated in mitochondria of tumor cells (17-fold increase in mitochondria/cytosol ratio), whereas unmodified PU-H71 showed minimal mitochondrial localization. Treatment of tumor cells with PU-H71-TPP dissipated mitochondrial membrane potential, inhibited oxidative phosphorylation in sensitive cell types, and reduced ATP production, resulting in apoptosis and tumor cell killing. Unmodified PU-H71 had no effect. Bioinformatics analysis identified a "mitochondrial Hsp90" signature in Acute Myeloid Leukemia (AML), which correlates with worse disease outcome. Accordingly, inhibition of mitochondrial Hsp90s killed primary and cultured AML cells, with minimal effects on normal peripheral blood mononuclear cells. These data demonstrate that directing Hsp90 inhibitors with different chemical scaffolds to mitochondria is feasible and confers improved anticancer activity. A potential "addiction" to mitochondrial Hsp90s may provide a new therapeutic target in AML.

20.
Cell Rep ; 16(5): 1273-1286, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452461

RESUMO

Small-molecule BET bromodomain inhibitors (BETis) are actively being pursued in clinical trials for the treatment of a variety of cancers, but the mechanisms of resistance to BETis remain poorly understood. Using a mass spectrometry approach that globally measures kinase signaling at the proteomic level, we evaluated the response of the kinome to targeted BETi treatment in a panel of BRD4-dependent ovarian carcinoma (OC) cell lines. Despite initial inhibitory effects of BETi, OC cells acquired resistance following sustained treatment with the BETi JQ1. Through application of multiplexed inhibitor beads (MIBs) and mass spectrometry, we demonstrate that BETi resistance is mediated by adaptive kinome reprogramming, where activation of compensatory pro-survival kinase networks overcomes BET protein inhibition. Furthermore, drug combinations blocking these kinases may prevent or delay the development of drug resistance and enhance the efficacy of BETi therapy.


Assuntos
Antineoplásicos/farmacologia , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Proteômica/métodos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA