Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1394003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868767

RESUMO

Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.


Assuntos
Antígenos de Neoplasias , Inteligência Artificial , Imunoterapia , Neoplasias , Medicina de Precisão , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Medicina de Precisão/métodos , Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Biologia Computacional/métodos , Animais
2.
Adv Sci (Weinh) ; 10(35): e2302992, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904721

RESUMO

Lentiviral vectors (LV) have become the dominant tool for stable gene transfer into lymphocytes including chimeric antigen receptor (CAR) gene delivery to T cells, a major breakthrough in cancer therapy. Yet, room for improvement remains, especially for the latest LV generations delivering genes selectively into T cell subtypes, a key requirement for in vivo CAR T cell generation. Toward improving gene transfer rates with these vectors, whole transcriptome analyses on human T lymphocytes are conducted after exposure to CAR-encoding conventional vectors (VSV-LV) and vectors targeted to CD8+ (CD8-LV) or CD4+ T cells (CD4-LV). Genes related to quiescence and antiviral restriction are found to be upregulated in CAR-negative cells exposed to all types of LVs. Down-modulation of various antiviral restriction factors, including the interferon-induced transmembrane proteins (IFITMs) is achieved with rapamycin as verified by mass spectrometry (LC-MS). Strikingly, rapamycin enhances transduction by up to 7-fold for CD8-LV and CD4-LV without compromising CAR T cell activities but does not improve VSV-LV. When administered to humanized mice, CD8-LV results in higher rates of green fluorescent protein (GFP) gene delivery. Also in vivo CAR T cell generation is improved in kinetics and tumor control, however to a moderate extent, leaving room for improvement by optimizing the rapamycin administration schedule. The data favor multi-omics approaches for improvements in gene delivery.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Lentivirus/genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Antivirais
3.
Genome Med ; 14(1): 24, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227293

RESUMO

BACKGROUND: Pancreatic neuroendocrine neoplasms (PanNENs) fall into two subclasses: the well-differentiated, low- to high-grade pancreatic neuroendocrine tumors (PanNETs), and the poorly-differentiated, high-grade pancreatic neuroendocrine carcinomas (PanNECs). While recent studies suggest an endocrine descent of PanNETs, the origin of PanNECs remains unknown. METHODS: We performed DNA methylation analysis for 57 PanNEN samples and found that distinct methylation profiles separated PanNENs into two major groups, clearly distinguishing high-grade PanNECs from other PanNETs including high-grade NETG3. DNA alterations and immunohistochemistry of cell-type markers PDX1, ARX, and SOX9 were utilized to further characterize PanNECs and their cell of origin in the pancreas. RESULTS: Phylo-epigenetic and cell-type signature features derived from alpha, beta, acinar, and ductal adult cells suggest an exocrine cell of origin for PanNECs, thus separating them in cell lineage from other PanNENs of endocrine origin. CONCLUSIONS: Our study provides a robust and clinically applicable method to clearly distinguish PanNECs from G3 PanNETs, improving patient stratification.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Adulto , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Metilação de DNA , Humanos , Gradação de Tumores , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
4.
J Mol Med (Berl) ; 100(3): 351-372, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480199

RESUMO

Human sterile α motif and HD domain-containing protein 1 (SAMHD1), originally described as the major cellular deoxyribonucleoside triphosphate triphosphohydrolase (dNTPase) balancing the intracellular deoxynucleotide (dNTP) pool, has come recently into focus of cancer research. As outlined in this review, SAMHD1 has been reported to be mutated in a variety of cancer types and the expression of SAMHD1 is dysregulated in many cancers. Therefore, SAMHD1 is regarded as a tumor suppressor in certain tumors. Moreover, it has been proposed that SAMHD1 might fulfill the requirements of a driver gene in tumor development or might promote a so-called mutator phenotype. Besides its role as a dNTPase, several novel cellular functions of SAMHD1 have come to light only recently, including a role as negative regulator of innate immune responses and as facilitator of DNA end resection during DNA replication and repair. Therefore, SAMHD1 can be placed at the crossroads of various cellular processes. The present review summarizes the negative role of SAMHD1 in chemotherapy sensitivity, highlights reported SAMHD1 mutations found in various cancer types, and aims to discuss functional consequences as well as underlying mechanisms of SAMHD1 dysregulation potentially involved in cancer development.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Neoplasias , Humanos , Imunidade Inata , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo
5.
Blood ; 137(20): 2785-2799, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33232972

RESUMO

Aberrant B-cell receptor/NF-κB signaling is a hallmark feature of B-cell non-Hodgkin lymphomas, especially in diffuse large B-cell lymphoma (DLBCL). Recurrent mutations in this cascade, for example, in CD79B, CARD11, or NFKBIZ, and also in the Toll-like receptor pathway transducer MyD88, all deregulate NF-κB, but their differential impact on lymphoma development and biology remains to be determined. Here, we functionally investigate primary mouse lymphomas that formed in recipient mice of Eµ-myc transgenic hematopoietic stem cells stably transduced with naturally occurring NF-κB mutants. Although most mutants supported Myc-driven lymphoma formation through repressed apoptosis, CARD11- or MyD88-mutant lymphoma cells selectively presented with a macrophage-activating secretion profile, which, in turn, strongly enforced transforming growth factor ß (TGF-ß)-mediated senescence in the lymphoma cell compartment. However, MyD88- or CARD11-mutant Eµ-myc lymphomas exhibited high-level expression of the immune-checkpoint mediator programmed cell death ligand 1 (PD-L1), thus preventing their efficient clearance by adaptive host immunity. Conversely, these mutant-specific dependencies were therapeutically exploitable by anti-programmed cell death 1 checkpoint blockade, leading to direct T-cell-mediated lysis of predominantly but not exclusively senescent lymphoma cells. Importantly, mouse-based mutant MyD88- and CARD11-derived signatures marked DLBCL subgroups exhibiting mirroring phenotypes with respect to the triad of senescence induction, macrophage attraction, and evasion of cytotoxic T-cell immunity. Complementing genomic subclassification approaches, our functional, cross-species investigation unveils pathogenic principles and therapeutic vulnerabilities applicable to and testable in human DLBCL subsets that may inform future personalized treatment strategies.


Assuntos
Imunidade Adaptativa , Proteínas Adaptadoras de Sinalização CARD/genética , Senescência Celular/fisiologia , Guanilato Ciclase/genética , Linfoma Difuso de Grandes Células B/imunologia , Fator 88 de Diferenciação Mieloide/genética , Proteínas de Neoplasias/genética , Linfócitos T Citotóxicos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígenos CD79/genética , Linhagem Celular Tumoral , Quimiotaxia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Genes myc , Humanos , Inibidores de Checkpoint Imunológico , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/terapia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , NF-kappa B/genética , NF-kappa B/metabolismo , Mutação Puntual , Proteína 2 Ligante de Morte Celular Programada 1/antagonistas & inibidores , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Transcriptoma
6.
Plant Cell ; 29(12): 3085-3101, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29133466

RESUMO

In prokaryotic systems, the translation initiation of many, though not all, mRNAs depends on interaction between a sequence element upstream of the start codon (the Shine-Dalgarno sequence [SD]) and a complementary sequence in the 3' end of the 16S rRNA (anti-Shine-Dalgarno sequence [aSD]). Although many chloroplast mRNAs harbor putative SDs in their 5' untranslated regions and the aSD displays strong conservation, the functional relevance of SD-aSD interactions in plastid translation is unclear. Here, by generating transplastomic tobacco (Nicotiana tabacum) mutants with point mutations in the aSD coupled with genome-wide analysis of translation by ribosome profiling, we provide a global picture of SD-dependent translation in plastids. We observed a pronounced correlation between weakened predicted SD-aSD interactions and reduced translation efficiency. However, multiple lines of evidence suggest that the strength of the SD-aSD interaction is not the only determinant of the translational output of many plastid mRNAs. Finally, the translation efficiency of mRNAs with strong secondary structures around the start codon is more dependent on the SD-aSD interaction than weakly structured mRNAs. Thus, our data reveal the importance of the aSD in plastid translation initiation, uncover chloroplast genes whose translation is influenced by SD-aSD interactions, and provide insights into determinants of translation efficiency in plastids.


Assuntos
Nicotiana/genética , Plastídeos/genética , Biossíntese de Proteínas/genética , Alelos , Sequência de Bases , Códon de Iniciação/genética , Genoma de Planta , Conformação de Ácido Nucleico , Fenótipo , Plantas Geneticamente Modificadas , Mutação Puntual/genética , Polirribossomos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética
7.
Nat Commun ; 8: 14093, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120820

RESUMO

Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal-distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC.


Assuntos
Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA/genética , Dosagem de Genes/genética , Proteína da Polipose Adenomatosa do Colo/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mutação , Proteína Supressora de Tumor p53/genética , Sequenciamento Completo do Genoma
8.
PLoS One ; 10(5): e0126283, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945798

RESUMO

By regulating the timing of cellular processes, the circadian clock provides a way to adapt physiology and behaviour to the geophysical time. In mammals, a light-entrainable master clock located in the suprachiasmatic nucleus (SCN) controls peripheral clocks that are present in virtually every body cell. Defective circadian timing is associated with several pathologies such as cancer and metabolic and sleep disorders. To better understand the circadian regulation of cellular processes, we developed a bioinformatics pipeline encompassing the analysis of high-throughput data sets and the exploitation of published knowledge by text-mining. We identified 118 novel potential clock-regulated genes and integrated them into an existing high-quality circadian network, generating the to-date most comprehensive network of circadian regulated genes (NCRG). To validate particular elements in our network, we assessed publicly available ChIP-seq data for BMAL1, REV-ERBα/ß and RORα/γ proteins and found strong evidence for circadian regulation of Elavl1, Nme1, Dhx6, Med1 and Rbbp7 all of which are involved in the regulation of tumourigenesis. Furthermore, we identified Ncl and Ddx6, as targets of RORγ and REV-ERBα, ß, respectively. Most interestingly, these genes were also reported to be involved in miRNA regulation; in particular, NCL regulates several miRNAs, all involved in cancer aggressiveness. Thus, NCL represents a novel potential link via which the circadian clock, and specifically RORγ, regulates the expression of miRNAs, with particular consequences in breast cancer progression. Our findings bring us one step forward towards a mechanistic understanding of mammalian circadian regulation, and provide further evidence of the influence of circadian deregulation in cancer.


Assuntos
Relógios Circadianos/genética , Redes Reguladoras de Genes , Animais , Relógios Circadianos/fisiologia , Biologia Computacional/métodos , Mineração de Dados , Ontologia Genética , Humanos , Mamíferos/genética , Mamíferos/fisiologia , Anotação de Sequência Molecular , Neoplasias/genética , Neoplasias/fisiopatologia , Núcleo Supraquiasmático/fisiologia
9.
Plant J ; 72(1): 115-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22639905

RESUMO

Although our knowledge about the mechanisms of gene expression in chloroplasts has increased substantially over the past decades, next to nothing is known about the signals and factors that govern expression of the plastid genome in non-green tissues. Here we report the development of a quantitative method suitable for determining the activity of cis-acting elements for gene expression in non-green plastids. The in vivo assay is based on stable transformation of the plastid genome and the discovery that root length upon seedling growth in the presence of the plastid translational inhibitor kanamycin is directly proportional to the expression strength of the resistance gene nptII in transgenic tobacco plastids. By testing various combinations of promoters and translation initiation signals, we have used this experimental system to identify cis-elements that are highly active in non-green plastids. Surprisingly, heterologous expression elements from maize plastids were significantly more efficient in conferring high expression levels in root plastids than homologous expression elements from tobacco. Our work has established a quantitative method for characterization of gene expression in non-green plastid types, and has led to identification of cis-elements for efficient plastid transgene expression in non-green tissues, which are valuable tools for future transplastomic studies in basic and applied research.


Assuntos
Regiões 5' não Traduzidas/genética , Expressão Gênica/genética , Resistência a Canamicina/genética , Nicotiana/genética , Plastídeos/genética , Regiões Promotoras Genéticas/genética , Genes Reporter , Marcadores Genéticos , Vetores Genéticos , Genomas de Plastídeos , Canamicina/farmacologia , Especificidade de Órgãos , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Transgenes , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA