Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35617021

RESUMO

Mitotically stable random monoallelic gene expression (RME) is documented for a small percentage of autosomal genes. We developed an in vivo genetic model to study the role of enhancers in RME using high-resolution single-cell analysis of natural killer (NK) cell receptor gene expression and enhancer deletions in the mouse germline. Enhancers of the RME NK receptor genes were accessible and enriched in H3K27ac on silent and active alleles alike in cells sorted according to allelic expression status, suggesting enhancer activation and gene expression status can be decoupled. In genes with multiple enhancers, enhancer deletion reduced gene expression frequency, in one instance converting the universally expressed gene encoding NKG2D into an RME gene, recapitulating all aspects of natural RME including mitotic stability of both the active and silent states. The results support the binary model of enhancer action, and suggest that RME is a consequence of general properties of gene regulation by enhancers rather than an RME-specific epigenetic program. Therefore, many and perhaps all genes may be subject to some degree of RME. Surprisingly, this was borne out by analysis of several genes that define different major hematopoietic lineages, that were previously thought to be universally expressed within those lineages: the genes encoding NKG2D, CD45, CD8α, and Thy-1. We propose that intrinsically probabilistic gene allele regulation is a general property of enhancer-controlled gene expression, with previously documented RME representing an extreme on a broad continuum.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Sequências Reguladoras de Ácido Nucleico , Alelos , Animais , Cromossomos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Camundongos
2.
Sci Rep ; 10(1): 5688, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231230

RESUMO

Small molecule based targeted therapies for the treatment of metastatic melanoma hold promise but responses are often not durable, and tumors frequently relapse. Response to adoptive cell transfer (ACT)-based immunotherapy in melanoma patients are durable but patients develop resistance primarily due to loss of antigen expression. The combination of small molecules that sustain T cell effector function with ACT could lead to long lasting responses. Here, we have developed a novel co-culture cell-based high throughput assay system to identify compounds that could potentially synergize or enhance ACT-based immunotherapy of melanoma. A BRAFV600E mutant melanoma cell line, SB-3123p which is resistant to Pmel-1-directed ACT due to low gp100 expression levels was used to develop a homogenous time resolve fluorescence (HTRF), screening assay. This high throughput screening assay quantitates IFNγ released upon recognition of the SB-3123p melanoma cells by Pmel-1 CD8+ T-cells. A focused collection of approximately 500 small molecules targeting a broad range of cellular mechanisms was screened, and four active compounds that increased melanoma antigen expression leading to enhanced IFNγ production were identified and their in vitro activity was validated. These four compounds may provide a basis for enhanced immune recognition and design of novel therapeutic approaches for patients with BRAF mutant melanoma resistant to ACT due to antigen downregulation.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Fatores Imunológicos/metabolismo , Imunoterapia Adotiva/métodos , Melanoma/fisiopatologia , Recidiva Local de Neoplasia/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo
3.
Leukemia ; 34(5): 1354-1363, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31768017

RESUMO

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an oncofetal protein expressed in various cancers including leukemia. In this study, we assessed the role of IGF2BP1 in orchestrating leukemia stem cell properties. Tumor-initiating potential, sensitivity to chemotherapeutic agents, and expression of cancer stem cell markers were assessed in a panel of myeloid, B-, and T-cell leukemia cell lines using gain- and loss-of-function systems, cross-linking immunoprecipitation (CLIP), and photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP) techniques. Here, we report that genetic or chemical inhibition of IGF2BP1 decreases leukemia cells' tumorigenicity, promotes myeloid differentiation, increases leukemia cell death, and sensitizes leukemia cells to chemotherapeutic drugs. IGF2BP1 affects proliferation and tumorigenic potential of leukemia cells through critical regulators of self-renewal HOXB4 and MYB and through regulation of expression of the aldehyde dehydrogenase, ALDH1A1. Our data indicate that IGF2BP1 maintains leukemia stem cell properties by regulating multiple pathways of stemness through transcriptional and metabolic factors.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Oncogênicas v-myb/metabolismo , Proteínas de Ligação a RNA/metabolismo , Retinal Desidrogenase/metabolismo , Fatores de Transcrição/metabolismo , Família Aldeído Desidrogenase 1/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Proteínas Oncogênicas v-myb/genética , Proteínas de Ligação a RNA/genética , Retinal Desidrogenase/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Genes Dev ; 33(15-16): 1048-1068, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31221665

RESUMO

Fetal hematopoietic stem and progenitor cells (HSPCs) hold promise to cure a wide array of hematological diseases, and we previously found a role for the RNA-binding protein (RBP) Lin28b in respecifying adult HSPCs to resemble their fetal counterparts. Here we show by single-cell RNA sequencing that Lin28b alone was insufficient for complete reprogramming of gene expression from the adult toward the fetal pattern. Using proteomics and in situ analyses, we found that Lin28b (and its closely related paralog, Lin28a) directly interacted with Igf2bp3, another RBP, and their enforced co-expression in adult HSPCs reactivated fetal-like B-cell development in vivo more efficiently than either factor alone. In B-cell progenitors, Lin28b and Igf2bp3 jointly stabilized thousands of mRNAs by binding at the same sites, including those of the B-cell regulators Pax5 and Arid3a as well as Igf2bp3 mRNA itself, forming an autoregulatory loop. Our results suggest that Lin28b and Igf2bp3 are at the center of a gene regulatory network that mediates the fetal-adult hematopoietic switch. A method to efficiently generate induced fetal-like hematopoietic stem cells (ifHSCs) will facilitate basic studies of their biology and possibly pave a path toward their clinical application.


Assuntos
Reprogramação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Proteínas de Ligação a DNA/genética , Camundongos , MicroRNAs/metabolismo , Modelos Animais , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
5.
Elife ; 42015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26565589

RESUMO

Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Testes Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA