Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(7): 1138-1148, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308787

RESUMO

Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the ß2 subunit of the α4ß2 nicotine acetylcholine receptor. Rare predicted loss-of-function and likely deleterious missense variants in CHRNB2 in aggregate were associated with a 35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence interval (CI) = 0.56-0.76, P = 1.9 × 10-8). An independent common variant association in the protective direction ( rs2072659 ; OR = 0.96; CI = 0.94-0.98; P = 5.3 × 10-6) was also evident, suggesting an allelic series. Our findings in humans align with decades-old experimental observations in mice that ß2 loss abolishes nicotine-mediated neuronal responses and attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting CHRNB2 in the brain for the treatment of nicotine addiction.


Assuntos
Nicotina , Tabagismo , Humanos , Animais , Camundongos , Fumar/genética , Tabagismo/genética , Fenótipo , Razão de Chances
2.
Theranostics ; 11(20): 9738-9751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815781

RESUMO

Rationale: Angiogenesis and osteogenesis are highly coupled processes which are indispensable to bone repair. However, the underlying mechanism(s) remain elusive. To bridge the gap in understanding the coupling process is crucial to develop corresponding solutions to abnormal bone healing. Epidermal growth factor-like protein 6 (EGFL6) is an angiogenic factor specifically and distinctively up-regulated during osteoblast differentiation. In contrast with most currently known osteoblast-derived coupling factors, EGFL6 is highlighted with little or low expression in other cells and tissues. Methods: In this study, primary bone marrow mesenchymal stem cells (MSCs) and osteoblastic cell line (MC3T3-E1) were transduced with lentiviral silencing or overexpression constructs targeting EGFL6. Cells were induced by osteogenic medium, followed by the evaluation of mineralization as well as related gene and protein expression. Global and conditional knockout mice were established to examine the bone phenotype under physiological condition. Furthermore, bone defect models were created to investigate the outcome of bone repair in mice lacking EGFL6 expression. Results: We show that overexpression of EGFL6 markedly enhances osteogenic capacity in vitro by augmenting bone morphogenic protein (BMP)-Smad and MAPK signaling, whereas downregulation of EGFL6 diminishes osteoblastic mineralization. Interestingly, osteoblast differentiation was not affected by the exogenous addition of EGFL6 protein, thereby indicating that EGFL6 may regulate osteoblastic function in an intracrine manner. Mice with osteoblast-specific and global knockout of EGFL6 surprisingly exhibit a normal bone phenotype under physiological conditions. However, EGFL6-deficiency leads to compromised bone repair in a bone defect model which is characterized by decreased formation of type H vessels as well as osteoblast lineage cells. Conclusions: Together, these data demonstrate that EGFL6 serves as an essential regulator to couple osteogenesis to angiogenesis during bone repair.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Neovascularização Fisiológica/fisiologia , Osteogênese/fisiologia , Animais , Células da Medula Óssea/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Regeneração Óssea/fisiologia , Osso e Ossos/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Moléculas de Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Cultura Primária de Células , Transdução de Sinais , Proteínas Smad/metabolismo
3.
Eur J Hum Genet ; 28(9): 1243-1264, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32376988

RESUMO

Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings augment our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes.


Assuntos
Anormalidades Múltiplas/genética , Colágenos Fibrilares/genética , Efeito Fundador , Luxação do Quadril/genética , Escoliose/genética , Anormalidades Múltiplas/patologia , Adolescente , Animais , Desenvolvimento Ósseo , Criança , Pré-Escolar , Consanguinidade , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Colágenos Fibrilares/metabolismo , Frequência do Gene , Luxação do Quadril/patologia , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Linhagem , Escoliose/patologia , Síndrome
4.
Bone ; 116: 232-247, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125729

RESUMO

Faulty bony repair causes dysrepair of injured growth plate cartilage and bone growth defects in children; however, the underlying mechanisms are unclear. Recently, we observed the prominent induction of neurotrophin­3 (NT-3) and its important roles as an osteogenic and angiogenic factor promoting the bony repair. The current study investigated its roles in regulating injury site remodelling. In a rat tibial growth plate drill-hole injury repair model, NT-3 was expressed prominently in osteoblasts at the injury site. Recombinant NT-3 (rhNT-3) systemic treatment enhanced, but NT-3 immunoneutralization attenuated, expression of cartilage-removal proteases (MMP-9 and MMP-13), presence of bone-resorbing osteoclasts and expression of osteoclast protease cathepsin K, and remodelling at the injury site. NT-3 was also highly induced in cultured mineralizing rat bone marrow stromal cells, and the conditioned medium augmented osteoclast formation and resorptive activity, an ability that was blocked by presence of anti-NT-3 antibody. Moreover, NT-3 and receptor TrkC were induced during osteoclastogenesis, and rhNT-3 treatment activated TrkC downstream kinase Erk1/2 in differentiating osteoclasts although rhNT-3 alone did not affect activation of osteoclastogenic transcription factors NF-κB or NFAT in RAW264.7 osteoclast precursor cells. Furthermore, rhNT-3 treatment increased, but NT-3 neutralization reduced, expression of osteoclastogenic cytokines (RANKL, TNF-α, and IL-1) in mineralizing osteoblasts and in growth plate injury site, and rhNT-3 augmented the induction of these cytokines caused by RANKL treatment in RAW264.7 cells. Thus, injury site osteoblast-derived NT-3 is important in promoting growth plate injury site remodelling, as it induces cartilage proteases for cartilage removal and augments osteoclastogenesis and resorption both directly (involving activing Erk1/2 and substantiating RANKL-induced increased expression of osteoclastogenic signals in differentiating osteoclasts) and indirectly (inducing osteoclastogenic signals in osteoblasts).


Assuntos
Cartilagem Articular/patologia , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Neurotrofina 3/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor trkC/metabolismo
5.
Dev Cell ; 42(5): 445-461.e5, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28844842

RESUMO

Dural cerebral veins (CV) are required for cerebrospinal fluid reabsorption and brain homeostasis, but mechanisms that regulate their growth and remodeling are unknown. We report molecular and cellular processes that regulate dural CV development in mammals and describe venous malformations in humans with craniosynostosis and TWIST1 mutations that are recapitulated in mouse models. Surprisingly, Twist1 is dispensable in endothelial cells but required for specification of osteoprogenitor cells that differentiate into preosteoblasts that produce bone morphogenetic proteins (BMPs). Inactivation of Bmp2 and Bmp4 in preosteoblasts and periosteal dura causes skull and CV malformations, similar to humans harboring TWIST1 mutations. Notably, arterial development appears normal, suggesting that morphogens from the skull and dura establish optimal venous networks independent from arterial influences. Collectively, our work establishes a paradigm whereby CV malformations result from primary or secondary loss of paracrine BMP signaling from preosteoblasts and dura, highlighting unique cellular interactions that influence tissue-specific angiogenesis in mammals.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Veias Cerebrais/anormalidades , Veias Cerebrais/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Crânio/patologia , Células-Tronco/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Diferenciação Celular , Artérias Cerebrais/crescimento & desenvolvimento , Artérias Cerebrais/patologia , Veias Cerebrais/patologia , Suturas Cranianas/patologia , Craniossinostoses/genética , Craniossinostoses/patologia , Dura-Máter/patologia , Feminino , Humanos , Mesoderma/metabolismo , Camundongos , Camundongos Mutantes , Mutação/genética , Crista Neural/patologia , Osteoblastos , Comunicação Parácrina , Seios Transversos/patologia
6.
J Bone Miner Res ; 31(6): 1258-74, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26763079

RESUMO

Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016 American Society for Bone and Mineral Research.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea/fisiologia , Cartilagem/metabolismo , Lâmina de Crescimento/metabolismo , Neurotrofina 3/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteogênese/fisiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Mol Cell Endocrinol ; 399: 346-53, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25448849

RESUMO

The RANKL-induced NF-κB signaling pathway is required for osteoclast formation and function. By screening for compounds that inhibit RANKL-induced NF-κB activation using a luciferase reporter gene assay in RAW264.7 cells, we identified triptolide (PG490), as a candidate compound targeting osteoclast differentiation and osteoclast-mediated osteolysis. Triptolide (PG490) is an active compound of the medicinal herb Tripterygium wilfordii Hook F (TWHF) or Lei Gong Teng with known anti-inflammatory properties. We found that triptolide inhibited osteoclastogenesis and bone resorption, as well as RANKL-induced NF-қB activities as monitored by luciferase reporter gene assays and the nuclear translocation of p65. In vivo studies showed that triptolide attenuates titanium-induced osteolysis and osteoclast formation in a mouse calvarial model. Considering that drugs which protect against localized bone loss are critically needed for the effective treatment of particle-induced osteolysis, our data suggest that triptolide might have therapeutic potential for the treatment of bone lytic diseases caused by prosthetic wear particles.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Diterpenos/farmacologia , Osteoclastos/metabolismo , Osteólise/tratamento farmacológico , Fenantrenos/farmacologia , Ligante RANK/metabolismo , Titânio/toxicidade , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular , Compostos de Epóxi/farmacologia , Camundongos , Osteoclastos/patologia , Osteólise/induzido quimicamente , Osteólise/metabolismo , Osteólise/patologia
8.
J Cell Physiol ; 230(6): 1235-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25363829

RESUMO

Osteolytic bone diseases are characterized by excessive osteoclast formation and activation. Protein kinase C (PKC)-dependent pathways regulate cell growth, differentiation and apoptosis in many cellular systems, and have been implicated in cancer development and osteoclast formation. A number of PKC inhibitors with anti-cancer properties have been developed, but whether they might also influence osteolysis (a common complication of bone invading cancers) is unclear. We studied the effects of the PKC inhibitor compound, GF109203X on osteoclast formation and activity, processes driven by receptor activator of NFκB ligand (RANKL). We found that GF109203X strongly and dose dependently suppresses osteoclastogenesis and osteoclast activity in RANKL-treated primary mouse bone marrow cells. Consistent with this GF109203X reduced expression of key osteoclastic genes, including cathepsin K, calcitonin receptor, tartrate resistant acid phosphatase (TRAP) and the proton pump subunit V-ATPase-d2 in RANKL-treated primary mouse bone marrow cells. Expression of these proteins is dependent upon RANKL-induced NF-κB and NFAT transcription factor actions; both were reduced in osteoclast progenitor populations by GF109203X treatment, notably NFATc1 levels. Furthermore, we showed that GF109203X inhibits RANKL-induced calcium oscillation. Together, this study shows GF109203X may block osteoclast functions, suggesting that pharmacological blockade of PKC-dependent pathways has therapeutic potential in osteolytic diseases.


Assuntos
Indóis/farmacologia , Maleimidas/farmacologia , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ligante RANK/metabolismo , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Osteoclastos/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
J Cell Physiol ; 230(1): 82-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24909139

RESUMO

Angiogenesis plays a pivotal role in bone formation, remodeling, and fracture healing. The regulation of angiogenesis in the bone microenvironment is highly complex and orchestrated by intercellular communication between bone cells and endothelial cells. Here, we report that EGF-like domain 7 (EGFL7), a member of the epidermal growth factor (EGF) repeat protein superfamily is expressed in both the osteoclast and osteoblast lineages, and promotes endothelial cell activities. Addition of exogenous recombinant EGFL7 potentiates SVEC (simian virus 40-transformed mouse microvascular endothelial cell line) cell migration and tube-like structure formation in vitro. Moreover, recombinant EGFL7 promotes angiogenesis featuring web-like structures in ex vivo fetal mouse metatarsal angiogenesis assay. We show that recombinant EGFL7 induces phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducer and activator of transcription 3 (STAT3), and focal adhesion kinase (FAK) in SVEC cells. Inhibition of ERK1/2 and STAT3 signaling impairs EGFL7-induced endothelial cell migration, and angiogenesis in fetal mouse metatarsal explants. Bioinformatic analyses indicate that EGFL7 contains a conserved RGD/QGD motif and EGFL7-induced endothelial cell migration is significantly reduced in the presence of RGD peptides. Moreover, EGFL7 gene expression is significantly upregulated during growth plate injury repair. Together, these results demonstrate that EGFL7 expressed by bone cells regulates endothelial cell activities through integrin-mediated signaling. This study highlights the important role that EGFL7, like EGFL6, expressed in bone microenvironment plays in the regulation of angiogenesis in bone.


Assuntos
Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Integrinas/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Osso e Ossos/irrigação sanguínea , Osso e Ossos/citologia , Proteínas de Ligação ao Cálcio , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Família de Proteínas EGF , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Consolidação da Fratura/fisiologia , Lâmina de Crescimento/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteocalcina/biossíntese , Osteoclastos/metabolismo , Osteogênese/fisiologia , Fosforilação/efeitos dos fármacos , Proteínas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fraturas Salter-Harris , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/biossíntese
10.
FEBS Lett ; 588(1): 143-50, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269886

RESUMO

Bone remodeling is regulated by secreted factors in the bone microenvironment. However, data regarding osteoclast-derived factors that influence osteoblast differentiation are lacking. Here, we show that HtrA1 is produced as a secreted protein during osteoclastogenesis, and negatively regulates osteoblast differentiation. Exogenous addition of recombinant HtrA1 attenuates osteoblast differentiation and BMP2-induced Smad1/5/8, ERK1/2 and p38 phosphorylation in pre-osteoblasts. Our studies imply a unique mode of crosstalk in which HtrA1 is produced by both osteoclasts and osteoblasts and negatively regulates osteoblast differentiation, suggesting that HtrA1 may mediate the fine tuning of paracrine and autocrine regulations during bone remodeling processes.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Serina Endopeptidases/metabolismo , Proteínas Smad/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Osteoblastos/citologia , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fosforilação/efeitos dos fármacos , Ligante RANK/genética , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Serina Endopeptidases/farmacologia , Regulação para Cima/efeitos dos fármacos
11.
Biochem Pharmacol ; 86(12): 1775-83, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24091016

RESUMO

The RANKL-induced NF-κB signaling pathway is essential for osteoclastogenesis. This study aims to identify specific inhibitors targeting NF-κB signaling pathway, which might serve as useful small molecule inhibitors for the treatment and alleviation of osteoclast-mediated bone lytic diseases. By screening for compounds that selectively inhibit RANKL-induced NF-κB activation in RAW264.7 cells as monitored by luciferase reporter gene assay, we identified SC-514, a specific inhibitor of IKKß, as a candidate compound targeting osteoclastogenesis. SC-514 dose-dependently inhibits RANKL-induced osteoclastogenesis with an IC50 of <5µM. At high concentrations, SC-514 (≥12.5µM) induced apoptosis and caspase 3 activation in RAW264.7 cells. Moreover, SC-514 specifically suppressed NF-κB activity owing to delayed RANKL-induced degradation of IκBα and inhibition of p65 nuclear translocation. Taken together, our results indicate that SC-514 impairs RANKL-induced osteoclastogenesis and NF-κB activation. Thus, targeting IKKß by SC-514 presents as a potential treatment for osteoclast-related disorders such as osteoporosis and cancer-induced bone loss.


Assuntos
Divisão Celular/efeitos dos fármacos , Quinase I-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Osteoclastos/citologia , Ligante RANK/efeitos dos fármacos , Tiofenos/farmacologia , Animais , Apoptose , Western Blotting , Caspase 3/metabolismo , Divisão Celular/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Camundongos , Osteoclastos/enzimologia , Osteoclastos/metabolismo , Ligante RANK/fisiologia , Transdução de Sinais
12.
Cytokine Growth Factor Rev ; 24(3): 297-310, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23611723

RESUMO

Angiogenesis plays an important role in physiological bone growth and remodeling, as well as in pathological bone disorders such as fracture repair, osteonecrosis, and tumor metastasis to bone. Vascularization is required for bone remodeling along the endosteal surface of trabecular bone or Haversian canals within the cortical bone, as well as the homeostasis of the cartilage-subchondral bone interface. Angiogenic factors, produced by cells from a basic multicellular unit (BMU) within the bone remodeling compartment (BRC) regulate local endothelial cells and pericytes. In this review, we discuss the expression and function of angiogenic factors produced by osteoclasts, osteoblasts and osteocytes in the BMU and in the cartilage-subchondral bone interface. These include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), BMP7, receptor activator of NF-κB ligand (RANKL) and epidermal growth factor (EGF)-like family members. In addition, the expression of EGFL2, EGFL3, EGFL5, EGFL6, EGFL7, EGFL8 and EGFL9 has been recently identified in the bone local environment, giving important clues to their possible roles in angiogenesis. Understanding the role of angiogenic factors in the bone microenvironment may help to develop novel therapeutic targets and diagnostic biomarkers for bone and joint diseases, such as osteoporosis, osteonecrosis, osteoarthritis, and delayed fracture healing.


Assuntos
Indutores da Angiogênese/farmacologia , Osso e Ossos/efeitos dos fármacos , Fator de Crescimento Epidérmico/fisiologia , Desenvolvimento Ósseo , Proteína Morfogenética Óssea 7/fisiologia , Remodelação Óssea/efeitos dos fármacos , Humanos , Neovascularização Fisiológica , Ligante RANK/fisiologia
13.
Clin Biochem ; 45(12): 863-73, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22465238

RESUMO

OBJECTIVES: To review the current literature on the regulation of bone remodelling at the cellular level. DESIGN AND METHODS: The cellular activities of the cells in the basic multicellular unit (BMU) were evaluated. RESULTS: Bone remodelling requires an intimate cross-talk between osteoclasts and osteoblasts and is tightly coordinated by regulatory proteins that interact through complex autocrine/paracrine mechanisms. Osteocytes, bone lining cells, osteomacs, and vascular endothelial cells also regulate bone remodelling in the BMU via cell signalling networks of ligand-receptor complexes. In addition, through secreted and membrane-bound factors in the bone microenvironment, T and B lymphocytes mediate bone homeostasis in osteoimmunology. CONCLUSIONS: Osteoporosis and other bone diseases occur because multicellular communication within the BMU is disrupted. Understanding the cellular and molecular basis of bone remodelling and the discovery of novel paracrine or coupling factors, such as RANKL, sclerostin, EGFL6 and semaphorin 4D, will lay the foundation for drug development against bone diseases.


Assuntos
Remodelação Óssea , Osso e Ossos/patologia , Animais , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Doenças Ósseas Metabólicas/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Linfócitos/metabolismo , Linfócitos/fisiologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteoclastos/metabolismo , Osteoclastos/fisiologia
14.
J Cell Biochem ; 113(3): 946-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22034016

RESUMO

Pathological bone destruction (osteolysis) is a hallmark of many bone diseases including tumor metastasis to bone, locally osteolytic giant cell tumor (GCT) of bone, and Paget's disease. Paclitaxel is frequently prescribed in the treatment of several malignant tumors where it has been shown to exert beneficial effects on bone lesions. However, the mechanism(s) through which paclitaxel regulates osteoclast formation and function remain ill defined. In the present study, we demonstrate that paclitaxel dose-dependently inhibits receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis in both RAW264.7 cells and mouse bone marrow macrophage (BMM) systems. In addition, paclitaxel treatment reduces the bone resorptive activity of human osteoclasts derived from GCT of bone, and attenuates lipopolysaccharide (LPS)-induced osteolysis in a mouse calvarial model. Complementary cellular and biochemical analyses revealed that paclitaxel induces mitotic arrest of osteoclastic precursor cells. Furthermore, luciferase reporter gene assays and western blot analysis indicate that paclitaxel modulates key RANKL-induced activation pathways that are essential to osteoclast formation including NF-κB and ERK. Collectively, our findings demonstrate a role for paclitaxel in the regulation of osteoclast formation and function and uncover potential mechanism(s) through which paclitaxel alleviates pathological osteolysis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Reabsorção Óssea , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Paclitaxel/farmacologia , Ligante RANK/antagonistas & inibidores , Animais , Neoplasias Ósseas/patologia , Linhagem Celular , Citoesqueleto/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Tumor de Células Gigantes do Osso/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteoclastos/ultraestrutura , Osteólise , Ligante RANK/farmacologia
15.
J Biol Chem ; 286(25): 22035-46, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21531721

RESUMO

Angiogenesis is required for bone development, growth, and repair. It is influenced by the local bone environment that involves cross-talks between endothelial cells and adjacent bone cells. However, data regarding factors that directly contribute to angiogenesis by bone cells remain poorly understood. Here, we report that EGFL6, a member of the epidermal growth factor (EGF) repeat superfamily proteins, induces angiogenesis by a paracrine mechanism in which EGFL6 is expressed in osteoblastic-like cells but promotes migration and angiogenesis of endothelial cells. Co-immunoprecipitation assays revealed that EGFL6 is secreted in culture medium as a homodimer protein. Using scratch wound healing and transwell assays, we found that conditioned medium containing EGFL6 potentiates SVEC (a simian virus 40-transformed mouse microvascular endothelial cell line) endothelial cell migration. In addition, EGFL6 promotes the endothelial cell tube-like structure formation in Matrigel assays and angiogenesis in a chick embryo chorioallantoic membrane. Furthermore, we show that EGFL6 recombinant protein induces phosphorylation of ERK in SVEC endothelial cells. Inhibition of ERK impaired EGFL6-induced ERK activation and endothelial cell migration. Together, these results demonstrate, for the first time, that osteoblastic-like cells express EGFL6 that is capable of promoting endothelial cell migration and angiogenesis via ERK activation. Thus, the EGLF6 mediates a paracrine mechanism of cross-talk between vascular endothelial cells and osteoblasts and might offer an important new target for the potential treatment of bone diseases, including osteonecrosis, osteoporosis, and fracture healing.


Assuntos
Movimento Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicoproteínas/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Fisiológica , Peptídeos/metabolismo , Animais , Osso e Ossos/irrigação sanguínea , Células COS , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Chlorocebus aethiops , Membrana Corioalantoide/metabolismo , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neovascularização Fisiológica/efeitos dos fármacos , Oligopeptídeos/farmacologia , Osteoblastos/citologia , Osteoclastos/citologia , Comunicação Parácrina/efeitos dos fármacos , Peptídeos/química , Peptídeos/genética , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA