Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499339

RESUMO

Mesenchymal stem cell (MSC)-derived extracellular vesicles (exosomes) possess regeneration, cell proliferation, wound healing, and anti-senescence capabilities. The functions of exosomes can be modified by preconditioning MSCs through treatment with bio-pulsed reagents (Polygonum multiflorum Thunb extract). However, the beneficial effects of bio-pulsed small extracellular vesicles (sEVs) on the skin or hair remain unknown. This study investigated the in vitro mechanistic basis through which bio-pulsed sEVs enhance the bioactivity of the skin fibroblasts and hair follicle cells. Avian-derived MSCs (AMSCs) were isolated, characterized, and bio-pulsed to produce AMSC-sEVs, which were isolated, lyophilized, characterized, and analyzed. The effects of bio-pulsed AMSC-sEVs on cell proliferation, wound healing, and gene expression associated with skin and hair bioactivity were examined using human skin fibroblasts (HSFs) and follicle dermal papilla cells (HFDPCs). Bio-pulsed treatment significantly enhanced sEVs production by possibly upregulating RAB27A expression in AMSCs. Bio-pulsed AMSC-sEVs contained more exosomal proteins and RNAs than the control. Bio-pulsed AMSC-sEVs significantly augmented cell proliferation, wound healing, and gene expression in HSFs and HFDPCs. The present study investigated the role of bio-pulsed AMSC-sEVs in the bioactivity of the skin fibroblasts and hair follicle cells as mediators to offer potential health benefits for skin and hair.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Folículo Piloso/fisiologia , Células-Tronco Mesenquimais/metabolismo , Fibroblastos/metabolismo , Vesículas Extracelulares/metabolismo , Pele/metabolismo
2.
Front Cell Dev Biol ; 10: 862045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111333

RESUMO

Reduced fertility associated with normal aging may reflect the over-maturity of oocytes. It is increasingly important to reduce aging-induced infertility since recent trends show people marrying at later ages. 2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glucoside (THSG), a polyphenol extracted from Polygonum multiflorum, has been reported to have anti-inflammatory and anti-aging properties. To evaluate whether THSG can reduce aging-related ovarian damage in a female mouse model of aging, THSG was administered by gavage at a dose of 10 mg/kg twice weekly, starting at 4 weeks of age in a group of young mice. In addition, the effect of THSG in a group of aged mice was also studied in mice starting at 24 weeks of age. The number of oocytes in the THSG-fed group was higher than in the untreated control group. Although the percentage of secondary polar bodies (PB2) decreased during aging in the THSG-fed group, it decreased much more slowly than in the age-matched control group. THSG administration increased the quality of ovaries in young mice becoming aged. Western blotting analyses also indicated that CYP19, PR-B, and ER-ß expressions were significantly increased in 36-week-old mice. THSG also increased oocyte numbers in aged mice compared to mice without THSG fed. Studies of qPCR and immunohistochemistry (IHC) analyses of ovaries in the aged mice groups were conducted. THSG increased gene expression of anti-Müllerian hormone (AMH), a biomarker of oocyte number, and protein accumulation in 40-week-old mice. THSG increased the expression of pgc1α and atp6, mitochondrial biogenesis-related genes, and their protein expression. THSG also attenuated the fading rate of CYP11a and CYP19 associated with sex hormone synthesis. And THSG maintains a high level of ER-ß expression, thereby enhancing the sensitivity of estrogen. Our findings indicated that THSG increased or extended gene expression involved in ovarian maintenance and rejuvenation in young and aged mice. On the other hand, THSG treatments significantly maintained oocyte quantity and quality in both groups of young and aged mice compared to each age-matched control group. In conclusion, THSG can delay aging-related menopause, and the antioxidant properties of THSG may make it suitable for preventing aging-induced infertility.

3.
J Dent Sci ; 17(1): 14-29, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028016

RESUMO

BACKGROUND/PURPOSE: Culture environments play a critical role in stem cell expansion. This study aimed to evaluate the effects of 2,3,5,4'-tetrahydroxystilbene-2-O-b-D-glucoside (THSG) on the proliferation and differentiation of human dental pulp stem cells (DPSCs) in 2-dimensional (2D) and 3-dimensional (3D) culture systems. MATERIALS AND METHODS: Human DPSCs were seeded in T25 flasks for 2D cultivation. For the 3D culture system, DPSCs were mixed with microcarriers and cultured in spinner flasks. Cells in both culture systems were treated with THSG, and cell proliferation was determined using a cell counter and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. In THSG-treated DPSCs, the genes associated with proliferation, adipogenesis, neurogenesis, osteogenesis, pluripotency, oncogenesis, and apoptosis were analyzed using real-time polymerase chain reactions. RESULTS: The spinner flask time-dependently improved cell numbers, cell viability, and expansion rates in THSG-treated DPSCs. In both the T25 and spinner flasks, the messenger RNA (mRNA) levels of proliferation, osteogenesis, and pluripotent-related genes had a significant maximum expression with 10 µM THSG treatment. However, 0.1 µM of THSG may be the most suitable condition for triggering neurogenesis and adipogenesis gene expression when DPSCs were cultured in spinner flasks. Furthermore, the number of oncogenes and apoptotic genes decreased considerably in the presence of THSG in both the T25 and spinner flasks. CONCLUSION: The spinner flask bioreactor combined with THSG may upregulate proliferation and lineage-specific differentiation in DPSCs. Thus, the combination can be used to mass-produce and cultivate human DPSCs for regenerative dentistry.

4.
J Dent Sci ; 16(2): 599-607, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33854708

RESUMO

Abstract. BACKGROUND/PURPOSE: Although 2,3,5,4'-Tetrahydroxystilbene-2-O-beta-glucoside (THSG) reportedly has anti-inflammatory properties, its role in inducing the dedifferentiation of human dental pulp stem cells (DPSC) into pluripotent-like stem cells remains to be determined. The purpose of this study is to evaluate the effects of THSG on the pluripotent-like possibility and mechanism of DPSC. MATERIALS AND METHODS: DPSCs were treated with THSG, and cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTS) assay. Real-time polymerase chain reaction was used to analyze the mRNA expression levels of pluripotency-associated genes and oncogenes and to detect telomerase activity in the cells. Embryoid body formation assay was conducted, and pluripotency-related proteins were identified using Western blotting. Data were analyzed using one-way analysis of variance. RESULTS: Cell viability, telomerase activity, and embryoid body formation were enhanced in THSG-treated DPSCs. The mRNA expression levels of pluripotent-like genes (including Nanog homeobox [NANOG], SRY-box 2 [SOX2], and POU class 5 homeobox 1 [POU5F1/OCT4]) significantly increased after THSG treatment. The expression levels of pluripotency-related genes (Janus kinase-signal transducer 2 [JAK2] and signal transducer and activator of transcription 3 [STAT3]) increased, whereas those of oncogenes (Ras, SRC, HER2, and C-sis) decreased. Furthermore, the expression levels of the phosphorylated JAK2 and STAT3 proteins significantly increased after THSG treatment. CONCLUSION: THSG treatment may enhance the pluripotent-like possibility of DPSC through the JAK2/STAT3 axis. Hence, it may be used as an alternative cell-based therapeutic strategy in regenerative dentistry.

5.
J Periodontol ; 92(2): 306-316, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32790879

RESUMO

BACKGROUND: This study aimed to investigate the regenerative effects of 2,3,5,4'-tetrahydroxystilbene-2-O-ß-d-glucoside (THSG)-treated human dental pulp stem cells (DPSC) on the healing of experimental periodontal defects in rats. METHODS: The maxillary first molars of 30 male Sprague-Dawley rats were extracted, and after healing, bilateral periodontal defects were surgically created mesially in second molars. The defects were treated with Matrigel (as control), DPSC, or DPSC + THSG. After 2 weeks, the healed defects were evaluated using microcomputed tomography and through histological and immunohistochemical analyses. RESULTS: In the microcomputed tomography analysis, more new bone formation in the DPSC and DPSC + THSG groups was observed compared with the control group. The periodontal bone supporting ratio in site with DPSC + THSG was significantly higher than that in DPSC. Histologically, an enhanced new bone formation and more significant periodontal attachment were observed in the DPSC + THSG group. The expression levels of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and osteopontin (OPN) in the DPSC + THSG group were significantly greater than those in other groups. CONCLUSIONS: THSG-revolutionized DPSCs significantly shortened the regenerative period of periodontal defects by enhancing the cell recruitment and possibly the angiogenesis in rat models, which illustrate the critical implications for a clinical application and provide a novel tactic for periodontitis treatment.


Assuntos
Polpa Dentária , Fator A de Crescimento do Endotélio Vascular , Animais , Glucosídeos , Masculino , Ratos , Ratos Sprague-Dawley , Células-Tronco , Estilbenos , Microtomografia por Raio-X
6.
Cells ; 9(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756527

RESUMO

The property of drug-resistance may attenuate clinical therapy in cancer cells, such as chemoresistance to gefitinib in colon cancer cells. In previous studies, overexpression of PD-L1 causes proliferation and metastasis in cancer cells; therefore, the PD-L1 pathway allows tumor cells to exert an adaptive resistance mechanism in vivo. Nano-diamino-tetrac (NDAT) has been shown to enhance the anti-proliferative effect induced by first-line chemotherapy in various types of cancer, including colorectal cancer (CRC). In this work, we attempted to explore whether NDAT could enhance the anti-proliferative effect of gefitinib in CRC and clarified the mechanism of their interaction. The MTT assay was utilized to detect a reduction in cell proliferation in four primary culture tumor cells treated with gefitinib or NDAT. The gene expression of PD-L1 and other tumor growth-related molecules were quantified by quantitative polymerase chain reaction (qPCR). Furthermore, the identification of PI3K and PD-L1 in treated CRC cells were detected by western blotting analysis. PD-L1 presentation in HCT116 xenograft tumors was characterized by specialized immunohistochemistry (IHC) and the hematoxylin and eosin stain (H&E stain). The correlations between the change in PD-L1 expression and tumorigenic characteristics were also analyzed. (3) The PD-L1 was highly expressed in Colo_160224 rather than in the other three primary CRC cells and HCT-116 cells. Moreover, the PD-L1 expression was decreased by gefitinib (1 µM and 10 µM) in two cells (Colo_150624 and 160426), but 10 µM gefitinib stimulated PD-L1 expression in gefitinib-resistant primary CRC Colo_160224 cells. Inactivated PI3K reduced PD-L1 expression and proliferation in CRC Colo_160224 cells. Gefitinib didn't inhibit PD-L1 expression and PI3K activation in gefitinib-resistant Colo_160224 cells. However, NDAT inhibited PI3K activation as well as PD-L1 accumulation in gefitinib-resistant Colo_160224 cells. The combined treatment of NDAT and gefitinib inhibited pPI3K and PD-L1 expression and cell proliferation. Additionally, NDAT reduced PD-L1 accumulation and tumor growth in the HCT116 (K-RAS mutant) xenograft experiment. (4) Gefitinib might suppress PD-L1 expression but did not inhibit proliferation through PI3K in gefitinib-resistant primary CRC cells. However, NDAT not only down-regulated PD-L1 expression via blocking PI3K activation but also inhibited cell proliferation in gefitinib-resistant CRCs.


Assuntos
Antígeno B7-H1/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Poliglactina 910/farmacologia , Tiroxina/análogos & derivados , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Poliglactina 910/uso terapêutico , Tiroxina/farmacologia , Tiroxina/uso terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mar Drugs ; 18(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630719

RESUMO

BACKGROUND: Heteronemin, a marine sesterterpenoid-type natural product, possesses an antiproliferative effect in cancer cells. In addition, heteronemin has been shown to inhibit p53 expression. Our laboratory has demonstrated that the thyroid hormone deaminated analogue, tetrac, activates p53 and induces antiproliferation in colorectal cancer. However, such drug mechanisms are still to be studied in oral cancer cells. METHODS: We investigated the antiproliferative effects by Cell Counting Kit-8 and flow cytometry. The signal transduction pathway was measured by Western blotting analyses. Quantitative PCR was used to evaluate gene expression regulated by heteronemin, 3,3',5,5'-tetraiodothyroacetic acid (tetrac), or their combined treatment in oral cancer cells. RESULTS: Heteronemin inhibited not only expression of proliferative genes and Homo Sapiens Thrombospondin 1 (THBS-1) but also cell proliferation in both OEC-M1 and SCC-25 cells. Remarkably, heteronemin increased TGF-ß1 expression in SCC-25 cells. Tetrac suppressed expression of THBS-1 but not p53 expression in both cancer cell lines. Furthermore, the synergistic effect of tetrac and heteronemin inhibited ERK1/2 activation and heteronemin also blocked STAT3 signaling. Combined treatment increased p53 protein and p53 activation accumulation although heteronemin inhibited p53 expression in both cancer cell lines. The combined treatment induced antiproliferation synergistically more than a single agent. CONCLUSIONS: Both heteronemin and tetrac inhibited ERK1/2 activation and increased p53 phosphorylation. They also inhibited THBS-1 expression. Moreover, tetrac suppressed TGF-ß expression combined with heteronemin to further enhance antiproliferation and anti-metastasis in oral cancer cells.


Assuntos
Carcinoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Gengivais/tratamento farmacológico , Terpenos/farmacologia , Tiroxina/análogos & derivados , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terpenos/administração & dosagem , Tiroxina/administração & dosagem , Tiroxina/farmacologia
8.
Food Chem Toxicol ; 136: 111092, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31883986

RESUMO

Nano-diamino-tetrac (NDAT), a tetraiodothyroxine deaminated nano-particulated analog, has shown to inhibit expression of pro-inflammatory genes. NDAT inhibits expression of programmed death-ligand 1 (PD-L1). On the other hand, in addition to inhibiting inflammatory effect, the stilbene, resveratrol induces expression of cyclooxygenase-2 (COX-2) and its accumulation. Sequentially, inducible COX-2 complexes with p53 and induces p53-dependent anti-proliferation. In current study, we investigated mechanisms involved in combined treatment of NDAT and resveratrol on anti-proliferation in human oral cancer cells. Both resveratrol and NDAT inhibited expression of pro-inflammatory IL-1ß and TNF-α. They also inhibited expression of CCND1 and PD-L1. Both resveratrol and NDAT induced BAD expression but only resveratrol induced COX-2 expression in both OEC-M1 and SCC-25 cells. Combined treatment attenuated gene expression significantly compared with resveratrol treatment in both cancer cell lines. Resveratrol reduced nuclear PD-L1 accumulation which was enhanced by a STAT3 inhibitor, S31-201 or NDAT suggesting that NDAT may inactivate STAT3 to inhibit PD-L1 accumulation. In the presence of T4, NDAT further enhanced resveratrol-induced anti-proliferation in both cancer cell lines. These findings provide a novel understanding of the inhibition of NDAT in thyroxine-induced pro-inflammatory effect on resveratrol-induced anticancer properties.


Assuntos
Neoplasias Bucais/fisiopatologia , Poliglactina 910/farmacologia , Resveratrol/farmacologia , Tiroxina/análogos & derivados , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Sinergismo Farmacológico , Expressão Gênica , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Tiroxina/farmacologia
9.
J Dent Sci ; 14(3): 255-262, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31528253

RESUMO

BACKGROUND/PURPOSE: Dysregulation of cell cycle checkpoint control may lead to the independence of growth regulating signals. Checkpoint protein such as the PD-1/PD-L1 immune checkpoint involving tumor cells and host immune defense lymphocytes is a well-studied therapeutic target in oncology. Acting at a cell surface receptor on plasma membrane integrin αvß3, thyroxine stimulates intracellular accumulation of PD-L1 in cancer cells. Although resveratrol also binds to integrin αvß3, it reduces PD-L1 expression. MATERIALS AND METHODS: In current studies, we investigated the roles of resveratrol and thyroxine in regulating expression of proliferation-related genes and checkpoint genes, PD-L1, BTLA in two oral cancer cell lines. RESULTS: Thyroxine suppressed the expression of pro-apoptotic BAD but induced proliferative CCND1 expression in SSC-25 cells and OEC-M1 cells. It activated expression of PD-L1 and BTLA in both cell lines. On the other hand, resveratrol suppressed the expression of all. Alternatively, it activated BAD expression. Thus thyroxine induces checkpoint gene expression which may promote proliferation in cancer cells. Alternatively, resveratrol reverses the stimulatory effects of thyroid hormone to induce anti-proliferation. CONCLUSION: These findings provide new insights into the antagonizing effect of resveratrol on the thyroxine-induced expression of checkpoint genes and proliferative genes in oral cancers.

10.
Food Chem Toxicol ; 133: 110808, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31499123

RESUMO

The obesity-regulated gene, leptin, is essential for diet. Leptin resistance causes obesity and related diseases. Certain types of diet are able to decrease leptin resistance. However, leptin has been shown to be correlated with inflammation and stimulate proliferation of various cancers. Two synthetic leptin derivatives (mimetics), OB3 and [D-Leu-4]-OB3, show more effective than leptin in reducing obesity and diabetes in mouse models. OB3 inhibits leptin-induced proliferation in ovarian cancer cells. However, effects of these mimetics in hepatocellular carcinoma (HCC) have not been investigated. In the present study, we examined the effects of OB3 and [D-Leu-4]-OB3 on cell proliferation and gene expressions in human HCC cell cultures. In contrast to what was reported for leptin, OB3 and [D-Leu-4]-OB3 reduced cell proliferation in hepatomas. Both OB3 and [D-Leu-4]-OB3 stimulated expression of pro-apoptotic genes. Both compounds also inhibited expressions of pro-inflammatory, proliferative and metastatic genes and PD-L1 expression. In combination with leptin, OB3 inhibited leptin-induced cell proliferation and expressions of pro-inflammation-, and proliferation-related genes. Furthermore, the OB3 peptide inhibited phosphoinositide 3-kinase (PI3K) activation which is essential for leptin-induced proliferation in HCC. These results indicate that OB3 and [D-Leu-4]-OB3 may have the potential to reduce leptin-related inflammation and proliferation in HCC cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Leptina/farmacologia , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Proteínas Quinases/farmacologia
11.
Food Chem Toxicol ; 132: 110693, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31336132

RESUMO

Thyroid hormone, L-thyroxine (T4), induces inflammatory genes expressions and promotes cancer growth. It also induces expression of the checkpoint programmed death-ligand 1 (PD-L1), which plays a vital role in cancer progression. On the other hand, resveratrol inhibits inflammatory genes expressions. Moreover, resveratrol increases nuclear inducible cyclooxygenase (COX)-2 accumulation, complexes with p53, and induces p53-dependent anti-proliferation. In this study, we investigated the effect of T4 on resveratrol-induced anti-proliferation in oral cancer. T4 increased the expression and cytoplasmic accumulation of PD-L1. Increased expressions of pro-inflammatory genes, interleukin (IL)-1ß and transforming growth factor (TGF)-ß1, were shown to stimulate PD-L1 expression. T4 stimulated pro-inflammatory and proliferative genes expressions, and oral cancer cells proliferation. In contrast, resveratrol inhibited those genes and activated anti-proliferative genes. T4 retained resveratrol-induced COX-2 in cytoplasm and prevented COX-2 nuclear accumulation when resveratrol treated cancer cells. A specific signal transducer and activator of transcription 3 (STAT3) inhibitor, S31-201, blocked T4-induced inhibition and restored resveratrol-induced nuclear COX-2 accumulation. By inhibiting the T4-activated STAT3 signal transduction axis with S31-201, resveratrol was able to sequentially reestablish COX-2/p53-dependent gene expressions and anti-proliferation. These findings provide a novel understanding of the inhibitory effects of T4 on resveratrol-induced anticancer properties via the sequential expression of PD-L1 and inflammatory genes.


Assuntos
Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Neoplasias Bucais/patologia , Resveratrol/farmacologia , Tiroxina/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Ciclo-Oxigenase 2/metabolismo , Humanos , Neoplasias Bucais/metabolismo , Fator de Transcrição STAT3/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-30915033

RESUMO

Colorectal cancer is a serious medical problem in Taiwan. New, effective therapeutic approaches are needed. The selection of promising anticancer drugs and the transition from pre-clinical investigations to clinical trials are often challenging. The deaminated thyroid hormone analog (tetraiodothyroacetic acid, tetrac) and its nanoparticulate analog (NDAT) have been shown to have anti-proliferative activity in vitro and in xenograft model of different neoplasms, including colorectal cancers. However, mechanisms involved in tetrac- and NDAT-induced anti-proliferation in colorectal cancers are incompletely understood. We have investigated possible mechanisms of tetrac and NDAT action in colorectal cancer cells, using a perfusion bellows cell culture system that allows efficient, large-scale screening for mechanisms of drug actions on tumor cells. Although integrin αvß3 in K-RAS wild type colorectal cancer HT-29 cells was far less than that in K-RAS mutant HCT116 cells, HT-29 was more sensitive to both tetrac and NDAT. Results also indicate that both tetrac and NDAT bind to tumor cell surface integrin αvß3, and the agents may have different mechanisms of anti-proliferation in colorectal cancer cells. K-RAS status appears to play an important role in drug resistance that may be encountered in treatment with this drug combination.

14.
J Endod ; 45(4): 435-441, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30851933

RESUMO

INTRODUCTION: Although the therapeutic potential of human dental pulp stem cells (hDPSCs) has been studied for bone regeneration, the therapeutic efficiency needs further consideration and examinations for clinical applications. Thus, the aims of this study were to evaluate the effect of 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside (THSG) on the osteogenic differentiation of hDPSCs and to examine the therapeutic efficiency of the THSG-enhanced osseous potential of hDPSCs in alveolar bony defects of rats. METHODS: Expressions of osteogenic messenger RNAs (including ALP, RUNX2, BGLAP, and AMBN) were examined by quantitative real-time polymerase chain reaction. Alizarin red S staining was conducted to analyze THSG-induced mineralization of hDPSCs. To investigate the regenerative effects of THSG-treated hDPSCs on dental alveolar bone, bony defects were created in male Sprague-Dawley rats. Defects were treated with Matrigel (Corning Inc, Corning, NY), hDPSCs, or hDPSCs + THSG. After 2 weeks, defect healing was evaluated by micro-computed tomographic and histologic analyses. RESULTS: In the cell model, THSG induced osteogenesis-associated genes (ALP, RUNX2, and BGLAP) and an enamel-related gene (AMBN), resulting in mineralization as detected by alizarin red S staining after 2 weeks of treatment. In the animal model, THSG increased all parameters of bone formation (the relative bone volume, trabecular thickness, trabecular number, and trabecular separation) in alveolar bony defects of rats. THSG not only improved the quality of newly formed bone but also the quantity of new bone. CONCLUSIONS: These results showed important findings in revealing the THSG-enhanced osteogenic differentiation of hDPSCs and THSG-facilitated bone regeneration, which may provide an alternative option for cell-based regenerative therapy.


Assuntos
Perda do Osso Alveolar/terapia , Processo Alveolar/fisiologia , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Diferenciação Celular , Polpa Dentária/citologia , Glucosídeos/farmacologia , Osteogênese , Transplante de Células-Tronco , Células-Tronco/fisiologia , Estilbenos/farmacologia , Adolescente , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ratos Sprague-Dawley , Medicina Regenerativa/métodos , Estimulação Química , Adulto Jovem
15.
Oncotarget ; 9(75): 34033-34037, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30344919

RESUMO

The PD-1/PD-L1 immune checkpoint involving tumor cells and host immune defense lymphocytes is a well-studied therapeutic target in oncology. That PD-1 and PD-L1 may have additional functions within tumor cells that are independent of the checkpoint is indicated by actions of a thyroid hormone analogue, L-thyroxine (T4), on these checkpoint components. Acting at a cell surface receptor on plasma membrane integrin αvß3, T4 stimulates intracellular accumulation of PD-L1 in cancer cells. In these thyroid hormone-treated cells, T4-induced PD-L1 is non-immunologically anti-apoptotic, blocking activation of p53. Several laboratories have also described accumulation of PD-1 in a variety of cancer cells, not just immune defense lymphocytes and macrophages. Preliminary observations indicate that T4 stimulates intracellular accumulation of PD-1 in tumor cells, suggesting that, like PD-L1, PD-1 has non-immunologic roles in the setting of cancer. Where such roles are anti-apoptotic, thyroid hormone-directed cancer cell accumulation of PD-1 and PD-L1 may limit effectiveness of immunologic therapy directed at the immune checkpoint.

16.
Horm Cancer ; 9(6): 420-432, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30187356

RESUMO

Drug resistance complicates the clinical use of gefitinib. Tetraiodothyroacetic acid (tetrac) and nano-diamino-tetrac (NDAT) have been shown in vitro and in xenografts to have antiproliferative/angiogenic properties and to potentiate antiproliferative activity of other anticancer agents. In the current study, we investigated the effects of NDAT on the anticancer activities of gefitinib in human colorectal cancer cells. ß-Galactoside α-2,6-sialyltransferase 1 (ST6Gal1) catalyzes EGFR sialylation that is associated with gefitinib resistance in colorectal cancers, and this was also investigated. Gefitinib inhibited cell proliferation of HT-29 cells (K-ras wild-type), and NDAT significantly enhanced the antiproliferative action of gefitinib. Gefitinib inhibited cell proliferation of HCT116 cells (K-ras mutant) only in high concentration, and this was further enhanced by NDAT. NDAT enhancedd gefitinib-induced antiproliferation in gefitinib-resistant colorectal cancer cells by inhibiting ST6Gal1 activity and PI3K activation. Furthermore, NDAT enhanced gefitinib-induced anticancer activity additively in colorectal cancer HCT116 cell xenograft-bearing nude mice. Results suggest that NDAT may have an application with gefitinib as combination colorectal cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/patologia , Gefitinibe/farmacologia , Poliglactina 910/farmacologia , Tiroxina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/metabolismo , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Tiroxina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Front Pharmacol ; 9: 807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116189

RESUMO

Traditional herb medicine, golden thread (Anoectochilus formosanus Hayata) has been used to treat various diseases. Hyperglycemia induces generation of reactive oxygen species (ROS) and enhancement of oxidative stress which are risk factors for cancer progression and metastasis. In this study, we evaluated hypoglycemic effect of A. formosanus extracts (AFEs) in an inducible hyperglycemia animal model and its capacity of free-radical scavenging to establish hyperglycemia-related carcinogenesis. AFE reduced blood glucose in hyperglycemic mice while there was no change in control group. The incremental area under blood glucose response curve was decreased significantly in hyperglycemic mice treated with AFE in a dose-dependent manner. AFE and metformin at the same administrated dose of 50 mg/kg showed similar effect on intraperitoneal glucose tolerance test in hyperglycemic mice. Free-radical scavenger capacity of AFE was concentration dependent and 200 µg/ml of AFE was able to reduce more than 41% of the free radical. Treatment of cancer cells with AFE inhibited constitutive PD-L1 expression and its protein accumulation. It also induced expression of pro-apoptotic genes but inhibited proliferative and metastatic genes. In addition, it induced anti-proliferation in cancer cells. The results suggested that AFE not only reduced blood glucose concentration as metformin but also showed its potential use in cancer immune chemoprevention/therapy via hypoglycemic effect, ROS scavenging and PD-L1 suppression.

18.
Food Chem Toxicol ; 120: 1-11, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29960019

RESUMO

Programmed death-ligand 1 (PD-L1) is a critical regulator to defend tumor cells against immune surveillance. Thyroid hormone has been shown to induce PD-L1 expression in cancer cells. Its nano-particulated analogue, nano-diamino-tetrac (NDAT; Nanotetrac) is an anticancer/anti-angiogenic agent. In the current study, the inhibitory mechanism by which NDAT inhibited PD-L1 mRNA abundance and PD-L1 protein content in oral cancer cells was investigated. NDAT inhibited inducible PD-L1 expression and protein accumulation by the inhibition of activated ERK1/2 and PI3K. Knockdown PD-L1 also inhibited the proliferation of oral cancer cells which suggests that the inhibitory effect of NDAT on PD-L1 expression maybe is one of the critical mechanisms for NDAT-induced anti-proliferative effect in oral cancer cells.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Neoplasias Bucais/patologia , Nanopartículas , Tiroxina/análogos & derivados , Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Tiroxina/farmacologia
19.
Food Chem Toxicol ; 120: 346-355, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30026090

RESUMO

Leiomyomas (myomas) are the most common benign smooth muscle cell tumor of the myometrium. Resveratrol, a stilbene, has been used as an anti-inflammatory and antitumor agent. In the current study, we investigated the inhibitory effect of resveratrol on the proliferation of primary human myoma cell cultures. Resveratrol arrested cell proliferation via integrin αvß3. It also inhibited integrin αvß3 expression and protein accumulation. Concurrently, constitutive AKT phosphorylation in myoma cells was inhibited by resveratrol. Expressions of proapoptotic genes, such as cyclooxygenase (COX)-2, p21 and CDKN2, were induced by resveratrol in myoma cells. On the other hand, expressions of proliferative (anti-apoptotic) genes were either inhibited, as in BCL2, or unchanged, as in cyclin D1 and proliferating cell nuclear antigen (PCNA). The accumulation of insulin-like growth factor (IGF)-1 receptor (IGF-1R) was inhibited by resveratrol in primary myoma cells. IGF-1-induced cell proliferation was inhibited by co-incubation with resveratrol. Therefore, growth modulation of myoma cells occurs via mechanisms dependent on cross-talk between integrin αvß3 and IGF-1R. Our findings suggest that resveratrol can be considered an alternative therapeutic agent for myomas.


Assuntos
Proliferação de Células/efeitos dos fármacos , Integrina alfaVbeta3/metabolismo , Leiomioma/patologia , Receptor Cross-Talk , Receptor IGF Tipo 1/metabolismo , Estilbenos/farmacologia , Neoplasias Uterinas/patologia , Feminino , Citometria de Fluxo , Humanos , Marcação In Situ das Extremidades Cortadas , Leiomioma/metabolismo , Fosforilação , Resveratrol , Neoplasias Uterinas/metabolismo
20.
Horm Cancer ; 9(5): 349-360, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30027502

RESUMO

Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvß3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvß3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvß3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Neoplasias Colorretais/genética , Poliglactina 910/uso terapêutico , Resveratrol/uso terapêutico , Tiroxina/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Nus , Poliglactina 910/farmacologia , Resveratrol/farmacologia , Tiroxina/farmacologia , Tiroxina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA