Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 13, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185658

RESUMO

BACKGROUND: Radiation therapy often leads to late radiation-induced skin fibrosis (RISF), causing movement impairment and discomfort. We conducted a comprehensive study to assess the effectiveness of metformin and adipose-derived stem cells (ASCs), whether autologous or allogeneic, individually or in combination therapy, in mitigating RISF. METHODS: Using a female C57BL/6J mouse model subjected to hind limb irradiation as a representative RISF model, we evaluated metformin, ASCs, or their combination in two contexts: prophylactic (started on day 1 post-irradiation) and therapeutic (initiated on day 14 post-irradiation, coinciding with fibrosis symptoms). We measured limb movement, examined skin histology, and analyzed gene expression to assess treatment efficacy. RESULTS: Prophylactic metformin and ASCs, whether autologous or allogeneic, effectively prevented late fibrosis, with metformin showing promising results. However, combination therapy did not provide additional benefits when used prophylactically. Autologous ASCs, alone or with metformin, proved most effective against late-stage RISF. Prophylactic intervention outperformed late therapy for mitigating radiation skin damage. Co-culture studies revealed that ASCs and metformin downregulated inflammation and fibrotic gene expression in both mouse and human fibroblasts. CONCLUSIONS: Our study suggests metformin's potential as a prophylactic measure to prevent RISF, and the combination of ASCs and metformin holds promise for late-stage RISF treatment. These findings have clinical implications for improving the quality of life for those affected by radiation-induced skin fibrosis.


Assuntos
Metformina , Qualidade de Vida , Humanos , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Metformina/farmacologia , Metformina/uso terapêutico , Fibrose , Células-Tronco
2.
iScience ; 26(9): 107660, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37705953

RESUMO

Radiation therapy can lead to late radiation-induced skin fibrosis (RISF), causing movement restriction, pain, and organ dysfunction. This study evaluated adipose-derived extracellular matrix (Ad-ECM) as a mitigator of RISF. Female C57BL/6J mice that were irradiated developed fibrosis, which was mitigated by a single local Ad-ECM injection, improving limb movement and reducing epithelium thickness and collagen deposition. Ad-ECM treatment resulted in decreased expression of pro-inflammatory and fibrotic genes, and upregulation of anti-inflammatory cytokines, promoting M2 macrophage polarization. Co-culture of irradiated human fibroblasts with Ad-ECM down-modulated fibrotic gene expression and enhanced bone marrow cell migration. Ad-ECM treatment also increased interleukin (IL)-4, IL-5, and IL-15 expression in endothelial cells, stimulating M2 macrophage polarization and alleviating RISF. Prophylactic use of Ad-ECM showed effectiveness in mitigation. This study suggests Ad-ECM's potential in treating chronic-stage fibrosis.

3.
Stem Cells Transl Med ; 10(7): 1095-1114, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724714

RESUMO

Acute radiation syndrome (ARS) is the radiation toxicity that can affect the hematopoietic, gastrointestinal, and nervous systems upon accidental radiation exposure within a short time. Currently, there are no effective and safe approaches to treat mass population exposure to ARS. Our study aimed to evaluate the therapeutic potential of allogeneic adipose-derived stem cells (ASCs) for total body irradiation (TBI)-induced ARS and understand the underlying mitigation mechanism. We employed 9.25 Gy TBI dose to C57BL/6 mice and studied the effect of allogeneic ASCs on mice survival and regeneration of the hematopoietic system. Our results indicate that intraperitoneal-injected ASCs migrated to the bone marrow, rescued hematopoiesis, and improved the survival of irradiated mice. Our transwell coculture results confirmed the migration of ASCs to irradiated bone marrow and rescue hematopoietic activity. Furthermore, contact coculture of ASCs improved the survival and hematopoiesis of irradiated bone marrow in vitro. Irradiation results in DNA damage, upregulation of inflammatory signals, and apoptosis in bone marrow cells, while coculture with ASCs reduces apoptosis via activation of DNA repair and the antioxidation system. Upon exposure to irradiated bone marrow cells, ASCs secrete prosurvival and hematopoietic factors, such as GM-CSF, MIP1α, MIP1ß, LIX, KC, 1P-10, Rantes, IL-17, MCSF, TNFα, Eotaxin, and IP-10, which reduces oxidative stress and rescues damaged bone marrow cells from apoptosis. Our findings suggest that allogeneic ASCs therapy is effective in mitigating TBI-induced ARS in mice and may be beneficial for clinical adaptation to treat TBI-induced toxicities. Further studies will help to advocate the scale-up and adaptation of allogeneic ASCs as the radiation countermeasure.


Assuntos
Síndrome Aguda da Radiação , Apoptose , Células da Medula Óssea/efeitos da radiação , Transplante de Células-Tronco Hematopoéticas , Síndrome Aguda da Radiação/terapia , Tecido Adiposo/citologia , Animais , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271950

RESUMO

BACKGROUND: Autologous fat transfer in the form of lipoaspirates for the reconstruction of the breast after breast cancer surgery is a commonly used procedure in plastic surgery. However, concerns regarding the oncologic risk of nutrient-rich fat tissue are widely debated. Previous studies have primarily focused on studying the interaction between adipose-derived stem cells (ASCs) and breast cancer cells. METHODS: In this study, we performed a comprehensive analysis of the paracrine- and contact-based interactions between lipoaspirates, ASCs and breast cancer cell lines. An inverted flask culture method was used to study the contact-based interaction between lipoaspirates and breast cancer cells, while GFP-expressing breast cancer cell lines were generated to study the cell-cell contact interaction with ASCs. Three different human breast cancer cell lines, MCF-7, MDA-MB-231 and BT-474, were studied. We analyzed the impact of these interactions on the proliferation, cell cycle and epithelial-to-mesenchymal (EMT) transition of the breast cancer cells. RESULTS: Our results revealed that both lipoaspirates and ASCs do not increase the proliferation rate of the breast cancer cells either through paracrine- or contact-dependent interactions. We observed that lipoaspirates selectively inhibit the proliferation of MCF-7 cells in contact co-culture, driven by the retinoblastoma (Rb) protein activity mediating cell cycle arrest. Additionally, ASCs inhibited MDA-MB-231 breast cancer cell proliferation in cell-cell contact-dependent interactions. Quantitative real-time PCR revealed no significant increase in the EMT-related genes in breast cancer cells upon co-culture with ASCs. CONCLUSION: In conclusion, this study provides evidence of the non-oncogenic character of lipoaspirates and supports the safety of clinical fat grafting in breast reconstruction after oncological surgical procedures. In vivo studies in appropriate animal models and long-term post-operative clinical data from patients are essential to reach the final safety recommendations.


Assuntos
Tecido Adiposo/citologia , Neoplasias da Mama/metabolismo , Comunicação Celular , Células-Tronco/metabolismo , Biomarcadores , Neoplasias da Mama/patologia , Diferenciação Celular , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados , Feminino , Humanos , Imunofenotipagem , Lipectomia , Mamoplastia , Cultura Primária de Células
5.
Am J Cancer Res ; 10(7): 2043-2065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775000

RESUMO

Cancer stem cells play a major role in tumor initiation, progression, and tumor relapse of prostate cancer (PCa). Recent studies suggest that Translationally Controlled Tumor Protein (TCTP) is a critical survival factor of stem cells including cancer stem cells. Here, we aimed to determine whether the TCTP inhibitor sertraline (STL) could target prostate cancer stem cells (PCSC). In colony formation, spheroidogenesis, angiogenesis, and wound healing assays STL showed a robust inhibition of tumorigenic (colony growth), angiogenic (endothelial tube formation) and metastatic (wound healing and migration) potential of PCSC. Interestingly, antioxidants such as N-acetyl cysteine (NAC), Glutathione (GSH) and catalase effectively blocked the cytotoxicity effect of STL on PCSC implicating oxidative stress as the underlying anti-PCSC targeting mechanism. Cell cycle analysis showed a robust G0 arrest in PCSC exposed to STL. Notably, STL induced both apoptosis and autophagy by activating free radical generation, hydrogen peroxide formation (H2O2), lipid peroxidation (LPO) and depleted the levels of glutathione (GSH). Moreover, surface marker expression analysis using confocal revealed that STL significantly down regulates the expression levels of aldehyde dehydrogenase 1 (ALDH1) and cluster of differentiation 44 (CD44) stem cell markers. Furthermore, in western blot analysis, STL treatment applied in a dose-dependent manner, caused a marked decrease in TCTP, phospho TCTP, anti-apoptotic markers survivin and cellular inhibitor of apoptosis protein 1 (cIAP1) expression as well as a significant increase in cleaved caspase3 and cleaved Poly [ADP-ribose] polymerase 1 (PARP-1) expression. Of note, STL also significantly down regulated the stem cell markers (ALDH1 and CD44) and epithelial to mesenchymal transition (EMT) markers such as transcription factor 8 (TCF8) and lymphoid enhancer-binding factor-1 (LEF1) expression levels. Concurrently, STL increased the levels of autophagy markers such as light chain (LC3), Beclin1 and autophagy-related gene (ATG5). Taken together, our study suggests that STL could be an effective therapeutic agent in eliminating prostate cancer stem cells.

6.
Phytother Res ; 34(9): 2366-2384, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32364634

RESUMO

Apoptosis and autophagy are important processes that control cellular homeostasis and have been highlighted as promising targets for novel anticancer drugs. This study aims to investigate the inhibitory effects and mechanisms of Neferine (Nef), an alkaloid from the lotus seed embryos of Nelumbo nucifera (N. nucifera), as a dual inducer of apoptosis and autophagy through the reactive oxygen species (ROS) activation in cervical cancer cells. Nef and N. nucifera extract suppressed the cell viability of HeLa and SiHa cells in a dose-dependent manner. Importantly, Nef showed minimal toxicity to normal cells. Furthermore, Nef inhibited anchorage-independent growth, colony formation and migration ability of cervical cancer cells. Nef induces mitochondrial apoptosis by increasing pro-apoptotic protein bax, cytochrome-c, cleaved caspase-3 and caspase-9, poly-ADP ribose polymerase (PARP) cleavage, DNA damage (pH2 AX) while downregulating Bcl-2, procaspase-3 and procaspase-9, and TCTP. Of note, apoptotic effect by Nef was significantly attenuated in the presence of N-acetylcysteine (NAC), suggesting pro-oxidant activity of this compound. Nef also promoted autophagy induction through increasing beclin-1, atg-4, atg-5 and atg-12, LC-3 activation, and P 62/SQSTM1 as determined by western blot analysis. Collectively, these results demonstrate that Nef is a potent anticancer compound against cervical cancer cells through inducing apoptosis and autophagic pathway involving ROS.


Assuntos
Apoptose/efeitos dos fármacos , Benzilisoquinolinas/química , Produtos Biológicos/química , Células HeLa/efeitos dos fármacos , Lotus/química , Sementes/química , Neoplasias do Colo do Útero/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Transfecção , Proteína Tumoral 1 Controlada por Tradução
7.
Toxicol Appl Pharmacol ; 401: 115071, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32454055

RESUMO

Prostate Cancer (PCa) is the second most common cancer among men in United States after skin cancer. Conventional chemotherapeutic drugs available for PCa treatment are limited due to toxicity and resistance issues. Therefore, there is an urgent need to develop more effective treatment for advanced PCa. In this current study, we focused on evaluating the anti-cancer efficacy of Eprinomectin (EP), a novel avermectin analog against PC3 metastatic PCa cells. EP displayed robust inhibition of cell viability of PC3 cells in addition to suppressing the colony formation and wound healing capabilities. Our study showed that EP targets PC3 cells via inducing ROS and apoptosis activation. EP treatment enforces cell cycle arrest at G0/G1 phase via targeting cyclin-dependent kinase 4 (CDK4) and subsequent induction of apoptosis in PC3 cells. At the molecular level, EP effectively inhibited the expression of various cancer stem cell markers such as ALDH1, Sox-2, Nanog, Oct3/4 and CD44. Interestingly, EP also inhibited the activity of alkaline phosphatase, a maker of pluripotent stem cells. Of note, EP treatment resulted in the translocation of ß-catenin from the nucleus to the cytoplasm indicating that EP antagonizes Wnt/ß-catenin signaling pathway. Western blotting analysis revealed that EP downregulated the expression of key cell cycle markers such as cyclin D1, cyclin D3, CDK4, and c-Myc. In addition, EP inhibited the anti-apoptotic markers such as Mcl-1, XIAP, c-IAP1 and survivin in PC3 cells. On the other hand, EP treatment resulted in the activation of pH2A.X, Bad, caspase-9, caspase-3 and cleavage of PARP1. Taken together, our data suggests that EP is a potential agent to treat advanced PCa cells via modulating apoptosis signaling.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ivermectina/análogos & derivados , Lactonas/farmacologia , Compostos Macrocíclicos/farmacologia , Neoplasias da Próstata/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Ivermectina/química , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Lactonas/uso terapêutico , Compostos Macrocíclicos/química , Compostos Macrocíclicos/uso terapêutico , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
8.
Free Radic Biol Med ; 143: 494-509, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31446057

RESUMO

Non-steroidal anti-inflammatory drugs (NSAID) have shown promise as anticancer agents by inducing cell death apart from their antipyretic, anti-inflammatory and anti-thrombogenic effects. In our current study, we investigated the oxidative stress mediated cell death mechanism of a NSAID derivative NCX4040 (a nitric oxide (NO) releasing form of aspirin) in castration-resistant prostate cancer (CRPC) PC3 cell line. Our data revealed that NCX4040 is more potent than its parent compound aspirin or NO releasing compound DETA NONOate. NCX4040 significantly induced hydrogen peroxide formation with ensuing oxidative stress and mitochondrial depolarization resulting in lipid peroxidation, cell cycle arrest, inhibition of colony growth and induction of apoptosis in PC3 cells. Moreover, NCX4040 inhibited migration potential of PC3 cells by depolymerizing F-actin and promoting anoikis. Interestingly, elevated levels of NADPH oxidase 1 (NOX1), superoxide dismutase (SOD) 1 and 2 were observed upon NCX4040 treatment. However, down regulation of anti-apoptotic markers B-cell lymphoma 2 (Bcl2) and anti-oxidant thioredoxin reductase 1 (TXNRD1) expression were observed. In addition, NCX4040 down regulated cyclin D1 expression in PC3 cells further supporting the anticancer effect of NCX4040. Western blot analysis revealed that significant down regulation of key anti-apoptotic markers such as cellular inhibitor of apoptosis protein-1 (cIAP1), X-linked inhibitor of apoptosis (XIAP), survivin, and Cellular-Myc (c-Myc). On the other hand, NCX4040-treated cells showed upregulation of phosho histone H2AX (pH2AX), cleaved caspase3 and cleaved Poly [ADP-ribose] polymerase 1 (PARP1). Taken together, our data demonstrate that NCX4040 treatment enhances free radical formation which in turn induces oxidative stress leading to mitochondrial mediated cell death in metastatic PC3 cells.


Assuntos
Apoptose/efeitos dos fármacos , Aspirina/análogos & derivados , Peróxido de Hidrogênio/farmacologia , Nitrocompostos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias da Próstata/patologia , Aspirina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Oxidantes/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA