Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Ann Clin Transl Neurol ; 11(5): 1359-1364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561955

RESUMO

Neuroferritinopathy is a disorder of neurodegeneration with brain iron accumulation that has no proven disease-modifying treatments. Clinical trials require biomarkers of iron deposition. We examined brain iron accumulation in one presymptomatic FTL mutation carrier, two individuals with neuroferritinopathy and one healthy control using ultra-high-field 7T MRI. There was increased magnetic susceptibility, suggestive of iron deposition, in superficial and deep gray matter in both presymptomatic and symptomatic neuroferritinopathy. Cavitation of the putamen and globus pallidus increased with disease stage and at follow up. The widespread brain iron deposition in presymptomatic and early disease provides an opportunity for monitoring disease-modifying intervention.


Assuntos
Distúrbios do Metabolismo do Ferro , Ferro , Imageamento por Ressonância Magnética , Distrofias Neuroaxonais , Humanos , Distrofias Neuroaxonais/diagnóstico por imagem , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/genética , Ferro/metabolismo , Adulto , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Pessoa de Meia-Idade , Apoferritinas/metabolismo , Apoferritinas/genética
2.
Cell Metab ; 36(1): 5-7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171338

RESUMO

There is emerging evidence that mitochondria can move between cells, particularly from immune cells into cancers. Recent work from Zhang et al. in Cancer Cell employs single-cell RNA- and mitochondrial DNA-sequencing in co-culture experiments and patient tumor samples to detect mitochondrial transfer. However, the mechanisms, scale, and implications remain uncertain.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Mitocôndrias/genética , DNA Mitocondrial/genética , Técnicas de Cocultura
3.
Neuropathology ; 44(2): 109-114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37438874

RESUMO

We present a comprehensive characterization of clinical, neuropathological, and multisystem features of a man with genetically confirmed McLeod neuroacanthocytosis syndrome, including video and autopsy findings. A 61-year-old man presented with a movement disorder and behavioral change. Examination showed dystonic choreiform movements in all four limbs, reduced deep-tendon reflexes, and wide-based gait. He had oromandibular dyskinesia causing severe dysphagia. Elevated serum creatinine kinase (CK) was first noted in his thirties, but investigations, including muscle biopsy at that time, were inconclusive. Brain magnetic resonance imaging showed white matter volume loss, atrophic basal ganglia, and chronic small vessel ischemia. Despite raised CK, electromyography did not show myopathic changes. Exome gene panel testing was negative, but targeted genetic analysis revealed a hemizygous pathogenic variant in the XK gene c.895C > T p.(Gln299Ter), consistent with a diagnosis of McLeod syndrome. The patient died of sepsis, and autopsy showed astrocytic gliosis and atrophy of the basal ganglia, diffuse iron deposition in the putamen, and mild Alzheimer's pathology. Muscle pathology was indicative of mild chronic neurogenic atrophy without overt myopathic features. He had non-specific cardiomyopathy and splenomegaly. McLeod syndrome is an ultra-rare neurodegenerative disorder caused by X-linked recessive mutations in the XK gene. Diagnosis has management implications since patients are at risk of severe transfusion reactions and cardiac complications. When a clinical diagnosis is suspected, candidate genes should be interrogated rather than solely relying on exome panels.


Assuntos
Doenças Musculares , Neuroacantocitose , Masculino , Humanos , Pessoa de Meia-Idade , Neuroacantocitose/genética , Neuroacantocitose/diagnóstico , Neuroacantocitose/patologia , Doenças Musculares/patologia , Gânglios da Base/patologia , Atrofia/patologia
4.
PLoS Genet ; 19(1): e1010573, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608143

RESUMO

Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNAAla gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.


Assuntos
DNA Mitocondrial , Transmissão Vertical de Doenças Infecciosas , Animais , Camundongos , Feminino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Células Germinativas/metabolismo , Mutação , Autofagia/genética , Mamíferos/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38550943

RESUMO

Mitochondria play a key role in cell homeostasis as a major source of intracellular energy (adenosine triphosphate), and as metabolic hubs regulating many canonical cell processes. Mitochondrial dysfunction has been widely documented in many common diseases, and genetic studies point towards a causal role in the pathogenesis of specific late-onset disorder. Together this makes targeting mitochondrial genes an attractive strategy for precision medicine. However, the genetics of mitochondrial biogenesis is complex, with over 1,100 candidate genes found in two different genomes: the nuclear DNA and mitochondrial DNA (mtDNA). Here, we review the current evidence associating mitochondrial genetic variants with distinct clinical phenotypes, with some having clear therapeutic implications. The strongest evidence has emerged through the investigation of rare inherited mitochondrial disorders, but genome-wide association studies also implicate mtDNA variants in the risk of developing common diseases, opening to door for the incorporation of mitochondrial genetic variant analysis in population disease risk stratification.

6.
medRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38196618

RESUMO

To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of ß cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.

7.
Nature ; 611(7934): 105-114, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198798

RESUMO

DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event-the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation1-3. Here we analyse whole-genome sequences from 66,083 people-including 12,509 people with cancer-and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 104 births and once in every 103 cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.


Assuntos
Núcleo Celular , DNA Mitocondrial , Genoma Humano , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Genoma Humano/genética , Mitocôndrias/genética , Filogenia , Análise de Sequência de DNA , Mutação , Lipossarcoma Mixoide/genética , Neoplasias/genética , Mutação em Linhagem Germinativa , Quebras de DNA de Cadeia Dupla , Reparo do DNA
8.
Mol Cell ; 82(19): 3646-3660.e9, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044900

RESUMO

The human mitochondrial genome must be replicated and expressed in a timely manner to maintain energy metabolism and supply cells with adequate levels of adenosine triphosphate. Central to this process is the idea that replication primers and gene products both arise via transcription from a single light strand promoter (LSP) such that primer formation can influence gene expression, with no consensus as to how this is regulated. Here, we report the discovery of a second light strand promoter (LSP2) in humans, with features characteristic of a bona fide mitochondrial promoter. We propose that the position of LSP2 on the mitochondrial genome allows replication and gene expression to be orchestrated from two distinct sites, which expands our long-held understanding of mitochondrial gene expression in humans.


Assuntos
Genoma Mitocondrial , Trifosfato de Adenosina/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transcrição Gênica
9.
Nucleic Acids Res ; 49(22): 12757-12768, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34850165

RESUMO

Methylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns of WGBS, and develop and assess the accuracy of a new protocol for mtDNA nucleotide variant-specific methylation using single-molecule Oxford Nanopore Sequencing (ONS). Our approach circumvents confounders by enriching for full-length molecules over nuclear DNA. Variant calling analysis against showed that 99.5% of homoplasmic mtDNA variants can be reliably identified providing there is adequate sequencing depth. We show that some of the mtDNA methylation signal detected by ONS is due to sequence-specific false positives introduced by the technique. The residual signal was observed across several human primary and cancer cell lines and multiple human tissues, but was always below the error threshold modelled using negative controls. We conclude that there is no evidence for CpG methylation in human mtDNA, thus resolving previous controversies. Additionally, we developed a reliable protocol to study epigenetic modifications of mtDNA at single-molecule and single-base resolution, with potential applications beyond CpG methylation.


Assuntos
Ilhas de CpG , Metilação de DNA , DNA Mitocondrial/metabolismo , Sequenciamento por Nanoporos/métodos , Linhagem Celular , Linhagem Celular Tumoral , DNA Mitocondrial/química , Variação Genética , Humanos , Sequenciamento Completo do Genoma
10.
Nat Rev Genet ; 22(2): 106-118, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32989265

RESUMO

Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.


Assuntos
DNA Mitocondrial , Heterogeneidade Genética , Organelas/genética , Animais , Variação Biológica da População , Predisposição Genética para Doença , Humanos
11.
Nat Metab ; 2(3): 221-222, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32694774
12.
Nature ; 583(7814): 96-102, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581362

RESUMO

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Assuntos
Internacionalidade , Programas Nacionais de Saúde , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Bases de Dados Factuais , Eritrócitos/metabolismo , Fator de Transcrição GATA1/genética , Humanos , Fenótipo , Locos de Características Quantitativas , Receptores de Trombopoetina/genética , Medicina Estatal , Reino Unido
13.
Semin Cell Dev Biol ; 97: 156-166, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31611080

RESUMO

Inheritance of the mitochondrial genome does not follow the rules of conventional Mendelian genetics. The mitochondrial DNA (mtDNA) is present in many copies per cell and is inherited through the maternal germline. In addition, mutations in the mtDNA will give rise to heteroplasmy, the coexistence of different mtDNA variants within a single cell, whose levels can vary considerably between cells, organs or organisms. The inheritance and subsequent accumulation of deleterious variants are the cause of severe progressive mitochondrial disorders and play a role in many other conditions, including aging, cancer and neurodegenerative disorders. Here, we discuss the processes that give rise to cell-to-cell variability in mtDNA composition, focussing on somatic mtDNA segregation and on less conventional sources of heteroplasmy: non-maternal inheritance and mtDNA recombination. Understanding how mtDNA variants and mutations emerge and evolve within an organism is of crucial importance to prevent and cure mitochondrial disease and can potentially impact more common aging-associated conditions.


Assuntos
Mitocôndrias/metabolismo , Oócitos/metabolismo , Feminino , Humanos
14.
Nat Commun ; 10(1): 3280, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337756

RESUMO

Somatic mutations in the mitochondrial genome (mtDNA) have been linked to multiple disease conditions and to ageing itself. In Drosophila, knock-in of a proofreading deficient mtDNA polymerase (POLG) generates high levels of somatic point mutations and also small indels, but surprisingly limited impact on organismal longevity or fitness. Here we describe a new mtDNA mutator model based on a mitochondrially-targeted cytidine deaminase, APOBEC1. mito-APOBEC1 acts as a potent mutagen which exclusively induces C:G>T:A transitions with no indels or mtDNA depletion. In these flies, the presence of multiple non-synonymous substitutions, even at modest heteroplasmy, disrupts mitochondrial function and dramatically impacts organismal fitness. A detailed analysis of the mutation profile in the POLG and mito-APOBEC1 models reveals that mutation type (quality) rather than quantity is a critical factor in impacting organismal fitness. The specificity for transition mutations and the severe phenotypes make mito-APOBEC1 an excellent mtDNA mutator model for ageing research.


Assuntos
Desaminase APOBEC-1/fisiologia , DNA Mitocondrial/química , Drosophila/genética , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Animais , Drosophila/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Modelos Genéticos , Mutação , Organismos Geneticamente Modificados
15.
Sci Rep ; 9(1): 2279, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783114

RESUMO

Although mitochondrial dysfunction plays a key role in the pathophysiology of acute kidney injury (AKI), the influence of mitochondrial genetic variability in this process remains unclear. We explored the association between the risk of post-cardiac bypass AKI and mitochondrial haplotype - inherited mitochondrial genomic variations of potentially functional significance. Our single-centre study recruited consecutive patients prior to surgery. Exclusions included stage 5 CKD, non-Caucasian race and subsequent off-pump surgery. Haplogroup analysis allowed characterisation of the study population using the common mutations and by phylogenetic supergroup (WXI and HV). Chi-square tests for association allowed the identification of potential predictors of AKI for use in logistic regression analysis. AKI occurred in 12.8% of the study population (n = 881; male 69.6%, non-diabetic 78.5%, median (interquartile range) age 68.0 (61.0-75.0) years). The haplogroup profile comprised H (42.7%), J (12.1%), T (10.9%), U (14.4%) and K (7.6%). Although the regression model was statistically significant (χ2 = 95.483, p < 0.0005), neither the phylogenetic supergroups nor any individual haplogroup was a significant contributor. We found no significant association between common European haplogroups and the risk of post-cardiac bypass AKI. However, given the major role of mitochondrial dysfunction in AKI, there is a need to replicate our findings in other cohorts and with other aetiologies of AKI.


Assuntos
Injúria Renal Aguda/genética , Haplótipos , Mitocôndrias/genética , Mutação , Complicações Pós-Operatórias/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ponte de Artéria Coronária , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Fatores de Risco
16.
BMC Gastroenterol ; 19(1): 11, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646848

RESUMO

BACKGROUND: Mitochondrial neurogastrointestinal encephalopathy (MNGIE), due to mutations in TYMP, often presents with gastrointestinal symptoms. Two sisters, initially managed for Crohn's disease based upon clinical, imaging and pathological findings, were later found to have MNGIE. The cases provide novel clinicopathological insight, for two further reasons: both sisters remain ambulant and in employment in their late 20s and 30s; diagnosis in one sister was made after a suspected azathioprine-precipitated acute illness. CASE PRESENTATION: A 25-year-old female presented with diarrhoea, vomiting, abdominal pain, and bloating. Faecal calprotectin, colonic biopsies and magnetic resonance enterography were consistent with a diagnosis of Crohn's disease. Azathioprine initiation preceded admission with a sore throat, headache, myalgia, and pyrexia. Withdrawal led to rapid clinical improvement. MRI brain revealed persistent, extensive white matter changes. Elevated plasma and urine thymidine and deoxyuridine, and genetic testing for TYMP variants, confirmed MNGIE. Testing of the patient's sister, also diagnosed with Crohn's disease, revealed identical variants. In this context, retrospective review of colonic biopsies identified histological findings suggestive of MNGIE. CONCLUSIONS: Azathioprine interference in nucleic acid metabolism may interact with the mitochondrial DNA depletion of MNGIE. Nucleotide supplementation, proposed for treatment by manipulating mitochondrial nucleoside pools, may require caution. The late onset and mild phenotype observed confirms presentation can occur later in life, and may reflect residual thymidine phosphorylase activity. Clinicians should consider measuring plasma thymidine levels in suspected Crohn's disease to rule out MNGIE, particularly if white matter abnormalities are identified on neuroimaging.


Assuntos
Doença de Crohn/diagnóstico , Gastroenteropatias/diagnóstico , Gastroenteropatias/patologia , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/patologia , Adulto , Idade de Início , Azatioprina/efeitos adversos , Desoxiuridina/sangue , Desoxiuridina/urina , Diagnóstico Diferencial , Feminino , Humanos , Fenótipo , Mutação Puntual , Estudos Retrospectivos , Timidina/sangue , Timidina/urina , Timidina Fosforilase/genética , Substância Branca/patologia
17.
Nat Commun ; 9(1): 4257, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323172

RESUMO

Somatic mutations during stem cell division are responsible for several cancers. In principle, a similar process could occur during the intense cell proliferation accompanying human brain development, leading to the accumulation of regionally distributed foci of mutations. Using dual platform >5000-fold depth sequencing of 102 genes in 173 adult human brain samples, we detect and validate somatic mutations in 27 of 54 brains. Using a mathematical model of neurodevelopment and approximate Bayesian inference, we predict that macroscopic islands of pathologically mutated neurons are likely to be common in the general population. The detected mutation spectrum also includes DNMT3A and TET2 which are likely to have originated from blood cell lineages. Together, these findings establish developmental mutagenesis as a potential mechanism for neurodegenerative disorders, and provide a novel mechanism for the regional onset and focal pathology in sporadic cases.


Assuntos
Encéfalo/metabolismo , Variação Genética , Células Clonais , Estudos de Associação Genética , Predisposição Genética para Doença , Técnicas de Genotipagem , Humanos , Mutação/genética , Reprodutibilidade dos Testes
18.
Hum Reprod ; 33(7): 1331-1341, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850888

RESUMO

STUDY QUESTION: Does germline selection (besides random genetic drift) play a role during the transmission of heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutations in humans? SUMMARY ANSWER: We conclude that inheritance of mtDNA is mutation-specific and governed by a combination of random genetic drift and negative and/or positive selection. WHAT IS KNOWN ALREADY: mtDNA inherits maternally through a genetic bottleneck, but the underlying mechanisms are largely unknown. Although random genetic drift is recognized as an important mechanism, selection mechanisms are thought to play a role as well. STUDY DESIGN, SIZE, DURATION: We determined the mtDNA mutation loads in 160 available oocytes, zygotes, and blastomeres of five carriers of the m.3243A>G mutation, one carrier of the m.8993T>G mutation, and one carrier of the m.14487T>C mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mutation loads were determined in PGD samples using PCR assays and analysed mathematically to test for random sampling effects. In addition, a meta-analysis has been performed on mutation load transmission data in the literature to confirm the results of the PGD samples. MAIN RESULTS AND THE ROLE OF CHANCE: By applying the Kimura distribution, which assumes random mechanisms, we found that mtDNA segregations patterns could be explained by variable bottleneck sizes among all our carriers (moment estimates ranging from 10 to 145). Marked differences in the bottleneck size would determine the probability that a carrier produces offspring with mutations markedly different than her own. We investigated whether bottleneck sizes might also be influenced by non-random mechanisms. We noted a consistent absence of high mutation loads in all our m.3243A>G carriers, indicating non-random events. To test this, we fitted a standard and a truncated Kimura distribution to the m.3243A>G segregation data. A Kimura distribution truncated at 76.5% heteroplasmy has a significantly better fit (P-value = 0.005) than the standard Kimura distribution. For the m.8993T>G mutation, we suspect a skewed mutation load distribution in the offspring. To test this hypothesis, we performed a meta-analysis on published blood mutation levels of offspring-mother (O-M) transmission for the m.3243A>G and m.8993T>G mutations. This analysis revealed some evidence that the O-M ratios for the m.8993T>G mutation are different from zero (P-value <0.001), while for the m.3243A>G mutation there was little evidence that the O-M ratios are non-zero. Lastly, for the m.14487T>G mutation, where the whole range of mutation loads was represented, we found no indications for selective events during its transmission. LARGE SCALE DATA: All data are included in the Results section of this article. LIMITATIONS, REASON FOR CAUTION: The availability of human material for the mutations is scarce, requiring additional samples to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Our data show that non-random mechanisms are involved during mtDNA segregation. We aimed to provide the mechanisms underlying these selection events. One explanation for selection against high m.3243A>G mutation loads could be, as previously reported, a pronounced oxidative phosphorylation (OXPHOS) deficiency at high mutation loads, which prohibits oogenesis (e.g. progression through meiosis). No maximum mutation loads of the m.8993T>G mutation seem to exist, as the OXPHOS deficiency is less severe, even at levels close to 100%. In contrast, high mutation loads seem to be favoured, probably because they lead to an increased mitochondrial membrane potential (MMP), a hallmark on which healthy mitochondria are being selected. This hypothesis could provide a possible explanation for the skewed segregation pattern observed. Our findings are corroborated by the segregation pattern of the m.14487T>C mutation, which does not affect OXPHOS and MMP significantly, and its transmission is therefore predominantly determined by random genetic drift. Our conclusion is that mutation-specific selection mechanisms occur during mtDNA inheritance, which has implications for PGD and mitochondrial replacement therapy. STUDY FUNDING/COMPETING INTEREST(S): This work has been funded by GROW-School of Oncology and Developmental Biology. The authors declare no competing interests.


Assuntos
Blastômeros/metabolismo , DNA Mitocondrial/genética , Mutação em Linhagem Germinativa , Oócitos/metabolismo , Adulto , DNA Mitocondrial/metabolismo , Feminino , Células Germinativas/metabolismo , Humanos , Masculino , Fosforilação Oxidativa
19.
Neurology ; 90(21): e1842-e1848, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29720545

RESUMO

OBJECTIVE: To describe a patient with a multifocal demyelinating motor neuropathy with onset in childhood and a mutation in phosphatase and tensin homolog (PTEN), a tumor suppressor gene associated with inherited tumor susceptibility conditions, macrocephaly, autism, ataxia, tremor, and epilepsy. Functional implications of this protein have been investigated in Parkinson and Alzheimer diseases. METHODS: We performed whole-exome sequencing in the patient's genomic DNA validated by Sanger sequencing. Immunoblotting, in vitro enzymatic assay, and label-free shotgun proteomic profiling were performed in the patient's fibroblasts. RESULTS: The predominant clinical presentation of the patient was a childhood onset, asymmetric progressive multifocal motor neuropathy. In addition, he presented with macrocephaly, autism spectrum disorder, and skin hamartomas, considered as clinical criteria for PTEN-related hamartoma tumor syndrome. Extensive tumor screening did not detect any malignancies. We detected a novel de novo heterozygous c.269T>C, p.(Phe90Ser) PTEN variant, which was absent in both parents. The pathogenicity of the variant is supported by altered expression of several PTEN-associated proteins involved in tumorigenesis. Moreover, fibroblasts showed a defect in catalytic activity of PTEN against the secondary substrate, phosphatidylinositol 3,4-trisphosphate. In support of our findings, focal hypermyelination leading to peripheral neuropathy has been reported in PTEN-deficient mice. CONCLUSION: We describe a novel phenotype, PTEN-associated multifocal demyelinating motor neuropathy with a skin hamartoma syndrome. A similar mechanism may potentially underlie other forms of Charcot-Marie-Tooth disease with involvement of the phosphatidylinositol pathway.


Assuntos
Hamartoma/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Neuropatia Hereditária Motora e Sensorial/genética , PTEN Fosfo-Hidrolase/genética , Adulto , Predisposição Genética para Doença , Hamartoma/complicações , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/complicações , Neuropatia Hereditária Motora e Sensorial/complicações , Humanos , Masculino , Mutação , Sequenciamento do Exoma
20.
Trends Endocrinol Metab ; 29(4): 249-259, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29501229

RESUMO

Alterations in mitochondrial metabolism influence cell differentiation and growth. This process is regulated by the activity of 2-oxoglutarate (2OG)-dependent dioxygenases (2OGDDs) - a diverse superfamily of oxygen-consuming enzymes - through modulation of the epigenetic landscape and transcriptional responses. Recent reports have described the role of mitochondrial metabolites in directing 2OGDD-driven cell-fate switches in stem cells (SCs), immune cells, and cancer cells. An understanding of the metabolic mechanisms underlying 2OGDD autoregulation is required for therapeutic targeting of this system. We propose a model dependent on oxygen and metabolite availability and discuss how this integrates 2OGDD metabolic signalling, the hypoxic transcriptional response, and fate-determining epigenetic changes.


Assuntos
Diferenciação Celular/fisiologia , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Animais , Homeostase/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA