Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
J Chin Med Assoc ; 87(5): 488-497, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451105

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have promising potential in clinical application, whereas their limited amount and sources hinder their bioavailability. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have become prominent options in regenerative medicine as both possess the ability to differentiate into MSCs. METHODS: Recently, our research team has successfully developed human leukocyte antigen (HLA)-homozygous iPSC cell lines with high immune compatibility, covering 13.5% of the Taiwanese population. As we deepen our understanding of the differences between these ESCs and HLA-homozygous iPSCs, our study focused on morphological observations and flow cytometry analysis of specific surface marker proteins during the differentiation of ESCs and iPSCs into MSCs. RESULTS: The results showed no significant differences between the two pluripotent stem cells, and both of them demonstrated the equivalent ability to further differentiate into adipose, cartilage, and bone cells. CONCLUSION: Our research revealed that these iPSCs with high immune compatibility exhibit the same differentiation potential as ESCs, enhancing the future applicability of highly immune-compatible iPSCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais , Mesoderma/citologia , Células Cultivadas
2.
Cells ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474400

RESUMO

Lung cancer remains a formidable global health challenge that necessitates inventive strategies to improve its therapeutic outcomes. The conventional treatments, including surgery, chemotherapy, and radiation, have demonstrated limitations in achieving sustained responses. Therefore, exploring novel approaches encompasses a range of interventions that show promise in enhancing the outcomes for patients with advanced or refractory cases of lung cancer. These groundbreaking interventions can potentially overcome cancer resistance and offer personalized solutions. Despite the rapid evolution of emerging lung cancer therapies, persistent challenges such as resistance, toxicity, and patient selection underscore the need for continued development. Consequently, the landscape of lung cancer therapy is transforming with the introduction of precision medicine, immunotherapy, and innovative therapeutic modalities. Additionally, a multifaceted approach involving combination therapies integrating targeted agents, immunotherapies, or traditional cytotoxic treatments addresses the heterogeneity of lung cancer while minimizing its adverse effects. This review provides a brief overview of the latest emerging therapies that are reshaping the landscape of lung cancer treatment. As these novel treatments progress through clinical trials are integrated into standard care, the potential for more effective, targeted, and personalized lung cancer therapies comes into focus, instilling renewed hope for patients facing challenging diagnoses.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/uso terapêutico , Imunoterapia , Terapia Combinada , Medicina de Precisão
3.
J Chin Med Assoc ; 87(1): 33-39, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991388

RESUMO

BACKGROUND: Lung adenocarcinoma-an aggressive and life-threatening malignancy-is a type of non-small-cell lung cancer. Despite medical advancements, the prognosis of lung adenocarcinoma remains unfavorable, likely because of its heterogeneous nature. Furthermore, few subtype-specific treatments are available for lung adenocarcinoma. This study was conducted to explore the molecular subtypes of lung adenocarcinoma. METHODS: We performed a joint analysis of transcriptome and proteome data from East Asian patients with lung adenocarcinoma (nonsmokers, 86.5%). RESULTS: Four novel subtypes were identified based on distinct molecular characteristics: subtypes I, II, III, and IV. In patients with subtype I lung adenocarcinoma, eukaryotic translation initiation factor 4 gamma 1 activates cell proliferation; inhibiting this factor suppresses tumor growth, and reducing its level induces autophagy. Subtype II is characterized by Kristen rat sarcoma viral oncogene homolog-activating oncogenesis; the onset age of this subtype is the lowest among all subtypes. Subtype III manifests as an advanced disease at diagnosis; it is characterized by a core serum response-related oncogenic signature, which indicates poor overall survival in Western patients with lung cancer. Subtype IV is more common in men than in women; it has astroglial characteristics. A Connectivity Map analysis revealed that the oncogenic expression patterns corresponding to subtypes I, II, III, and IV can be reversed by the inhibitors of Inhibitor of κB (IκB) kinase (eg, withaferin A), mammalian target of rapamycin (eg, everolimus), Src proto-oncogene (Src) (eg, saracatinib), and Transforming Growth Factor (TGF)-ß/Smad (eg, LY-364947), respectively. CONCLUSION: This study introduced an innovative multiomics data analysis pipeline. Using this approach, we successfully identified four molecular subtypes of lung adenocarcinoma and their candidate therapeutic agents. The newly identified subtypes can be combined with the current biomarkers to generate a comprehensive roadmap for treatment decision-making.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Adenocarcinoma/genética , Multiômica , Adenocarcinoma de Pulmão/genética , Prognóstico
4.
Health Sci Rep ; 6(11): e1675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38028682

RESUMO

Introduction: Poststernotomy mediastinitis (PSM) is a critical and life-threatening complication that can arise after cardiac surgery. The aim of this study was to evaluate and compare the outcomes of negative pressure wound therapy (NPWT) and conventional methods in the management of mediastinitis following heart surgery with a focus on Asian populations. Methods: For this retrospective study, we included and evaluated a total of 34 patients who had undergone cardiac operations between January 2011 and September 2021 and developed PSM. The patients were divided into two groups, the NPWT group (n = 16, 47.1%) and the conventional treatment group (n = 18, 52.9%), and compared. Results: The two groups showed no significant differences in terms of patient characteristics, PSM wound classification based on the El Oakley classification, and wound closure methods, but there was a higher incidence of diabetes mellitus in the NPWT group. With regard to mediastinal cultures, a higher prevalence of Staphylococcus epidermidis was observed in the NPWT group. However, we found no significant differences between the two groups regarding the time interval from diagnosis to wound closure, hospitalization duration, and re-exploration rate. Notably, the NPWT group exhibited a significantly higher in-hospital mortality rate than the conventional treatment group (p = 0.024). Conclusions: Our findings suggest that the use of NPWT might not lead to improved medical outcomes for patients with PSM when compared to conventional treatment methods. As a result, it becomes imperative to exercise great care when choosing patients for NPWT. To obtain more definitive and conclusive results and identify the most appropriate cases for NPWT, conducting larger randomized clinical trials is necessary.

5.
BMC Cancer ; 23(1): 1088, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950151

RESUMO

BACKGROUND: Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines. METHODS: Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo. RESULTS: CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth. CONCLUSIONS: CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Animais , Camundongos , RNA Circular/genética , Camundongos Nus , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , RNA Mensageiro , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Receptores de Ativinas Tipo I
6.
Cells ; 12(22)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998352

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) hold promise for cell-based therapy, yet the sourcing, quality, and invasive methods of MSCs impede their mass production and quality control. Induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) can be infinitely expanded, providing advantages over conventional MSCs in terms of meeting unmet clinical demands. METHODS: The potential of MSC therapy for Leber's hereditary optic neuropathy (LHON) remains uncertain. In this study, we used HLA-homozygous induced pluripotent stem cells to generate iMSCs using a defined protocol, and we examined their therapeutic potential in rotenone-induced LHON-like models in vitro and in vivo. RESULTS: The iMSCs did not cause any tumorigenic incidence or inflammation-related lesions after intravitreal transplantation, and they remained viable for at least nine days in the mouse recipient's eyes. In addition, iMSCs exhibited significant efficacy in safeguarding retinal ganglion cells (RGCs) from rotenone-induced cytotoxicity in vitro, and they ameliorated CGL+IPL layer thinning and RGC loss in vivo. Optical coherence tomography (OCT) and an electroretinogram demonstrated that iMSCs not only prevented RGC loss and impairments to the retinal architecture, but they also improved retinal electrophysiology performance. CONCLUSION: The generation of iMSCs via the HLA homozygosity of iPSCs offers a compelling avenue for overcoming the current limitations of MSC-based therapies. The results underscore the potential of iMSCs when addressing retinal disorders, and they highlight their clinical significance, offering renewed hope for individuals affected by LHON and other inherited retinal conditions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Atrofia Óptica Hereditária de Leber , Camundongos , Animais , Atrofia Óptica Hereditária de Leber/induzido quimicamente , Atrofia Óptica Hereditária de Leber/terapia , Atrofia Óptica Hereditária de Leber/patologia , Rotenona/toxicidade , Células-Tronco Pluripotentes Induzidas/patologia , Células Ganglionares da Retina/patologia , Células-Tronco Mesenquimais/patologia
7.
J Adv Res ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37557954

RESUMO

BACKGROUND: Modifications of lipid metabolism were closely associated with the manifestations and prognosis of coronavirus disease of 2019 (COVID-19). Pre-existing metabolic conditions exacerbated the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection while modulations of aberrant lipid metabolisms alleviated the manifestations. To elucidate the underlying mechanisms, an experimental platform that reproduces human respiratory physiology is required. METHODS: Here we generated induced pluripotent stem cell-derived airway organoids (iPSC-AOs) that resemble the human native airway. Single-cell sequencing (ScRNAseq) and microscopic examination verified the cellular heterogeneity and microstructures of iPSC-AOs, respectively. We subjected iPSC-AOs to SARS-CoV-2 infection and investigated the treatment effect of lipid modifiers statin drugs on viral pathogenesis, gene expression, and the intracellular trafficking of the SARS-CoV-2 entry receptor angiotensin-converting enzyme-2 (ACE-2). RESULTS: In SARS-CoV-2-infected iPSC-AOs, immunofluorescence staining detected the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins and bioinformatics analysis further showed the aberrant enrichment of lipid-associated pathways. In addition, SARS-CoV-2 hijacked the host RNA replication machinery and generated the new isoforms of a high-density lipoprotein constituent apolipoprotein A1 (APOA1) and the virus-scavenging protein deleted in malignant brain tumors 1 (DMBT1). Manipulating lipid homeostasis using cholesterol-lowering drugs (e.g. Statins) relocated the viral entry receptor angiotensin-converting enzyme-2 (ACE-2) and decreased N protein expression, leading to the reduction of SARS-CoV-2 entry and replication. The same lipid modifications suppressed the entry of luciferase-expressing SARS-CoV-2 pseudoviruses containing the S proteins derived from different SARS-CoV-2 variants, i.e. wild-type, alpha, delta, and omicron. CONCLUSIONS: Together, our data demonstrated that modifications of lipid pathways restrict SARS-CoV-2 propagation in the iPSC-AOs, which the inhibition is speculated through the translocation of ACE2 from the cell membrane to the cytosol. Considering the highly frequent mutation and generation of SARS-CoV-2 variants, targeting host metabolisms of cholesterol or other lipids may represent an alternative approach against SARS-CoV-2 infection.

8.
Nat Commun ; 14(1): 1694, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973285

RESUMO

N6-methyladenosine (m6A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m6A epitranscriptomic networks. Here, we investigate Li-Fraumeni syndrome (LFS)-associated neoplastic transformation driven by mutant p53 in iPSC-derived astrocytes, the cell-of-origin of gliomas. We find that mutant p53 but not wild-type (WT) p53 physically interacts with SVIL to recruit the H3K4me3 methyltransferase MLL1 to activate the expression of m6A reader YTHDF2, culminating in an oncogenic phenotype. Aberrant YTHDF2 upregulation markedly hampers expression of multiple m6A-marked tumor-suppressing transcripts, including CDKN2B and SPOCK2, and induces oncogenic reprogramming. Mutant p53 neoplastic behaviors are significantly impaired by genetic depletion of YTHDF2 or by pharmacological inhibition using MLL1 complex inhibitors. Our study reveals how mutant p53 hijacks epigenetic and epitranscriptomic machinery to initiate gliomagenesis and suggests potential treatment strategies for LFS gliomas.


Assuntos
Glioma , Síndrome de Li-Fraumeni , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Síndrome de Li-Fraumeni/genética , Transformação Celular Neoplásica/genética , Glioma/genética , Proteoglicanas/metabolismo
9.
J Chin Med Assoc ; 86(3): 274-281, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728396

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has brought tremendous challenges to public health and medical systems around the world. The current strategy for drug repurposing has accumulated some evidence on the use of N -acetylcysteine (NAC) in treating patients with COVID-19. However, the evidence remains debated. METHODS: We performed the systematic review and meta-analysis that complies with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Five databases and reference lists were searched from inception to May 14, 2022. Studies evaluating the efficacy of NAC in treating patients with COVID-19 were regarded as eligible. The review was registered prospectively on PROSPERO (CRD42022332791). RESULTS: Of 778 records identified from the preliminary search, four studies were enrolled in the final qualitative review and quantitative meta-analysis. A total of 355 patients were allocated into the NAC group and the control group. The evaluated outcomes included intubation rate, improvement, duration of intensive unit stay and hospital stay and mortality. The pooled results showed nonsignificant differences in intubation rate (OR, 0.55; 95% CI, 0.16-1.89; p = 0.34; I2 = 75%), improvement of oxygenation ([MD], 80.84; 95% CI, -38.16 to 199.84; p = 0.18; I2 = 98%), ICU stay (MD, -0.74; 95% CI, -3.19 to 1.71; p = 0.55; I2 = 95%), hospital stay (MD, -1.05; 95% CI, -3.02 to 0.92; p = 0.30; I2 = 90%), and mortality (OR, 0.58; 95% CI, 0.23-1.45; p = 0.24; I2 = 54%). Subsequent trial sequential analysis (TSA) showed conclusive nonsignificant results for mortality, while the TSA for the other outcomes suggested that a larger sample size is essential. CONCLUSIONS: The current evidence reveals NAC is not beneficial for treating patients with COVID- 19 with regard to respiratory outcome, mortality, duration of ICU stay and hospital stay.


Assuntos
COVID-19 , Humanos , Acetilcisteína/uso terapêutico , SARS-CoV-2 , Tempo de Internação
10.
Regen Ther ; 22: 50-58, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36618489

RESUMO

Introduction: Glaucoma is a vision-threatening disease associated with accelerated aging of trabecular meshwork (TM) which results in elevated intraocular pressure (IOP). Increased oxidative stress in TM plays an important role in cellular molecular damage which leads to senescence. Autophagy is an intracellular lysosomal degradation process which is activated when cells are under stressful condition, and emerging studies have demonstrated increased expression of modulators of apoptosis and expression of autophagic cascade in ex-vivo TM specimens or cultured TM cells under oxidative stress. Recently, studies have shown neuroprotective and IOP-lowering effects after transplanting mesenchymal stem cells (MSCs) or injecting condition medium (CM) of MSCs into ocular hypertension animal models. However, knowledge of the underlying mechanism accounting for these effects is limited. Using condition medium (CM) from human bone marrow-derived mesenchymal stem cells (BM-MSCs), we investigated the effects of the CM derived from BM-MSCs on TM autophagy and apoptosis. Methods: H2O2 was added to culture medium of human TM cells to mimic oxidative damage in glaucomatous eyes, and the autophagic and anti-apoptotic effects of BM-MSCs-derived CM was explored on the oxidatively damaged cells. Mitochondrial ROS production was examined by MitoSOX™, apoptosis was evaluated using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) staining, and the expression of proteins involved in autophagy as well as extracellular matrix was investigated via Western blot. Results: There were no significant differences in TM cell viability when the cells were treated with different concentrations of CM in the absence of oxidative stress. Cell viability was significantly higher in oxidatively damaged TM cells treated with 1X or 5X CM compared to untreated TM cells under oxidative stress. The mitochondrial ROS level significantly increased with oxidative stress, which was mitigated in the CM treatment groups. DNA fragmentation significantly decreased in oxidatively stressed TM cells after treatment with CM. LCB3 II/LCB3 I was significantly elevated in the oxidative stress group compared to the control group and was significantly decreased in the CM treatment groups. Expression of fibronectin was not significantly different among the groups. Conclusion: The CM derived from human BM-MSCs has the capacity to rescue oxidatively damaged human TM cells associated with decreased autophagy and apoptosis. The BM-MSCs CM has potential for slowing down age- and disease-related degeneration of TM in patients with glaucoma, facilitating success in the control of IOP.

11.
J Chin Med Assoc ; 86(2): 207-219, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652567

RESUMO

BACKGROUND: Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is an immune checkpoint and regulates the immune function of T cells. However, previous findings regarding the association of CTLA-4 polymorphisms and breast cancer remain inconclusive. Therefore, we performed a meta-analysis to investigate the potential effects of five polymorphisms (-1722 T/C, -1661 A/G -318 C/T, +49 A/G, and CT60 A/G) in the CTLA-4 gene on breast cancer susceptibility. METHODS: Relevant literatures were systematically searched through electronic databases including PubMed, EMBASE, and Web of Science up to October 10, 2021. Available data were extracted and odds ratios (ORs) with 95% confidence intervals were used to estimate the pooling effect size. The Newcastle-Ottawa Scale was applied for assessing the quality of included studies. We conducted subgroup analyses based on ethnicity and control sources to explore levels of heterogeneity. Moreover, sensitivity analysis and publication bias were assessed. RESULTS: Finally, a total of 12 eligible studies regarding CTLA-4 polymorphisms and breast cancer were included. For overall analyses, only the +49 A/G polymorphism was significantly associated with breast cancer under allelic (OR = 1.19), dominant (OR = 1.27), and recessive (OR = 1.27) models. Ethnicity-based subgroup analysis found that the +49 A/G polymorphism has a significant risk (OR = 2.03) of breast cancer under the recessive model in the non-Asian population. Studies with hospital-based controls showed that the +49 A/G polymorphism has significant breast cancer risks under allelic (OR = 1.44), dominant (OR = 1.86), and recessive (OR = 1.60) models. In addition, those with population-based controls found that -1722 T/C polymorphism has a significant breast cancer risk under allelic (OR = 1.19) and dominant (OR = 1.26) models. CONCLUSION: This meta-analysis suggested that CTLA-4 + 49 A/G polymorphism may significantly associate with breast cancer susceptibility. Future studies containing various populations are helpful for evaluating the impacts of CTLA-4 polymorphisms on breast cancer susceptibility.


Assuntos
Neoplasias da Mama , Antígeno CTLA-4 , Feminino , Humanos , Neoplasias da Mama/genética , Antígeno CTLA-4/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
12.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672144

RESUMO

Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs. We removed the fully connected layers and projected the features using principle component analysis (PCA), and subsequently classified iPSC-RPEs according to various differentiation degree. With the assistance of the support vector machine (SVM), this model further showed capabilities to classify iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-RGCs with an accuracy of 97.8%. In addition, the proposed model accurately recognized the differentiation of iPSC-RPEs and showed the potential to identify the candidate cells with ideal features and simultaneously exclude cells with immature/abnormal phenotypes. This rapid screening/classification system may facilitate the translation of iPSC-based technologies into clinical uses, such as cell transplantation therapy.


Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes Induzidas , Humanos , Inteligência Artificial , Epitélio Pigmentado da Retina , Diferenciação Celular
13.
J Chin Med Assoc ; 85(11): 1088-1092, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343274

RESUMO

BACKGROUND: Despite the effectiveness of intravitreal injection (IVI) of anti-vascular endothelial growth factor in treating retinal diseases, there remains a paucity of evidence on potential systemic risks associated with this procedure. This study aims to investigate cardiovascular parameters and the risk of hypertensive urgency after IVIs. METHODS: Patients who received IVIs for retinal/macular diseases were enrolled retrospectively. Patients who received cataract surgeries were enrolled as controls. Systolic and diastolic blood pressure (BP) and heart rate were measured 10 minutes before, immediately after, and more than 30 minutes after IVIs and cataract surgery. Multivariate analysis was performed to evaluate risk factors for hypertensive urgency. RESULTS: Seventy patients who received IVIs and 95 patients who received cataract surgeries were enrolled. A higher preoperative systolic BP was found in the IVI groups than in the control group (147.0 ± 22.9 vs 136.3 ± 21.8 mmHg, respectively). The patients who received IVIs had a higher increase in perioperative systolic BP immediately after the procedure than the controls (17.43 ± 20.53 mmHg vs 9.11 ± 18.92 mmHg, p = 0.009). The IVI procedure (odds ratio [OR] 4.84, p = 0.008), preoperative systolic BP ≥160 mmHg (OR 17.891, p = 0.001, compared to preoperative systolic BP <140 mmHg), and underlying hypertension (OR 3.305, p = 0.041) were risk factors for hypertensive urgency immediately after the IVIs. CONCLUSION: We found a transient increase in BP after IVIs, which may have been associated with hypertensive urgency and related cardiovascular disorders in older patients and in those with relevant comorbidities. Clinicians should pay more attention to these patients before performing IVIs.


Assuntos
Catarata , Hipertensão , Doenças Retinianas , Humanos , Idoso , Injeções Intravítreas , Estudos Retrospectivos , Pressão Sanguínea , Hipertensão/tratamento farmacológico
14.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430270

RESUMO

Human pluripotent stem cells (PSCs), including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), represent valuable cell sources to replace diseased or injured tissues in regenerative medicine. iPSCs exhibit the potential for indefinite self-renewal and differentiation into various cell types and can be reprogrammed from somatic tissue that can be easily obtained, paving the way for cell therapy, regenerative medicine, and personalized medicine. Cell therapies using various iPSC-derived cell types are now evolving rapidly for the treatment of clinical diseases, including Parkinson's disease, hematological diseases, cardiomyopathy, osteoarthritis, and retinal diseases. Since the first interventional clinical trial with autologous iPSC-derived retinal pigment epithelial cells (RPEs) for the treatment of age-related macular degeneration (AMD) was accomplished in Japan, several preclinical trials using iPSC suspensions or monolayers have been launched, or are ongoing or completed. The evolution and generation of human leukocyte antigen (HLA)-universal iPSCs may facilitate the clinical application of iPSC-based therapies. Thus, iPSCs hold great promise in the treatment of multiple retinal diseases. The efficacy and adverse effects of iPSC-based retinal therapies should be carefully assessed in ongoing and further clinical trials.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Doenças Retinianas , Humanos , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/terapia , Degeneração Macular/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Doenças Retinianas/metabolismo , Transplante de Células
15.
Cell Rep ; 41(4): 111546, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288717

RESUMO

Human papillomavirus (HPV)-induced carcinogenesis critically depends on the viral early protein 7 (E7), making E7 an attractive therapeutic target. Here, we report that the E7 messenger RNA (mRNA)-containing oncotranscript complex can be selectively targeted by heat treatment. In HPV-infected cells, viral E7 mRNA is modified by N6-methyladenosine (m6A) and stabilized by IGF2BP1, a cellular m6A reader. Heat treatment downregulates E7 mRNA and protein by destabilizing IGF2BP1 without the involvement of canonical heat-shock proteins and reverses HPV-associated carcinogenesis in vitro and in vivo. Mechanistically, heat treatment promotes IGF2BP1 aggregation only in the presence of m6A-modified E7 mRNA to form distinct heat-induced m6A E7 mRNA-IGF2BP1 granules, which are resolved by the ubiquitin-proteasome system. Collectively, our results not only show a mutual regulation between m6A RNA and its reader but also provide a heat-treatment-based therapeutic strategy for HPV-associated malignancies by specifically downregulating E7 mRNA-IGF2BP1 oncogenic complex.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Humanos , Alphapapillomavirus/metabolismo , Carcinogênese , Proteínas de Choque Térmico , Resposta ao Choque Térmico , Papillomaviridae , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Ubiquitina , Proteínas de Ligação a RNA
16.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806042

RESUMO

Lung cancers are life-threatening malignancies that cause great healthcare burdens in Taiwan and worldwide. The 5-year survival rate for Taiwanese patients with lung cancer is approximately 29%, an unsatisfactorily low number that remains to be improved. We first reviewed the molecular epidemiology derived from a deep proteogenomic resource in Taiwan. The nuclear factor erythroid 2-related factor 2 (NRF2)antioxidant mechanism was discovered to mediate the oncogenesis and tumor progression of lung adenocarcinoma. Additionally, DNA replication, glycolysis and stress response are positively associated with tumor stages, while cell-to-cell communication, signaling, integrin, G protein coupled receptors, ion channels and adaptive immunity are negatively associated with tumor stages. Three patient subgroups were discovered based on the clustering analysis of protein abundance in tumors. The first subgroup is associated with more advanced cancer stages and visceral pleural invasion, as well as higher mutation burdens. The second subgroup is associated with EGFR L858R mutations. The third subgroup is associated with PI3K/AKT pathways and cell cycles. Both EGFR and PI3K/AKT signaling pathways have been shown to induce NRF2 activation and tumor cell proliferation. We also reviewed the clinical evidence of patient outcomes in Taiwan given various approved targeted therapies, such as EGFR-tyrosine kinase inhibitors and anaplastic lymphoma kinase (ALK)inhibitors, in accordance with the patients' characteristics. Somatic mutations occurred in EGFR, KRAS, HER2 and BRAF genes, and these mutations have been detected in 55.7%, 5.2%, 2.0% and 0.7% patients, respectively. The EGFR mutation is the most prevalent targetable mutation in Taiwan. EML4-ALK translocations have been found in 9.8% of patients with wild-type EGFR. The molecular profiling of advanced NSCLC is critical to optimal therapeutic decision-making. The patient characteristics, such as mutation profiles, protein expression profiles, drug-resistance profiles, molecular oncogenic mechanisms and patient subgroup systems together offer new strategies for personalized treatments and patient care.


Assuntos
Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Mutação , Fator 2 Relacionado a NF-E2/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Taiwan/epidemiologia
17.
Biomedicines ; 10(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35740291

RESUMO

Diabetic macular edema (DME) is a highly common cause of vision loss in patients with diabetes. Optical coherence tomography (OCT) is crucial in classifying DME and tracking the results of DME treatment. The presence of intraretinal cystoid fluid (IRC) and subretinal fluid (SRF) and the disruption of the ellipsoid zone (EZ), which is part of the photoreceptor layer, are three crucial factors affecting the best corrected visual acuity (BCVA). However, the manual segmentation of retinal fluid and the EZ from retinal OCT images is laborious and time-consuming. Current methods focus only on the segmentation of retinal features, lacking a correlation with visual acuity. Therefore, we proposed a modified U-net, a deep learning algorithm, to segment these features from OCT images of patients with DME. We also correlated these features with visual acuity. The IRC, SRF, and EZ of the OCT retinal images were manually labeled and checked by doctors. We trained the modified U-net model on these labeled images. Our model achieved Sørensen-Dice coefficients of 0.80 and 0.89 for IRC and SRF, respectively. The area under the receiver operating characteristic curve (ROC) for EZ disruption was 0.88. Linear regression indicated that EZ disruption was the factor most strongly correlated with BCVA. This finding agrees with that of previous studies on OCT images. Thus, we demonstrate that our segmentation network can be feasibly applied to OCT image segmentation and assist physicians in assessing the severity of the disease.

18.
J Chin Med Assoc ; 85(8): 821-830, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666590

RESUMO

BACKGROUND: The development of mesenchymal stem cells (MSCs) has gained reputation from its therapeutic potential in stem cell regeneration, anti-inflammation, tumor suppression, and drug delivery treatment. Previous studies have shown MSCs have both promoting and suppressing effects against cancer cells. While the limitation of obtaining a large quantity of homologous MSCs for studies and treatment remains a challenge, an alternative approach involving the production of MSCs derived from induced pluripotent stem cells (iPSCs; induced MSCs [iMSCs]) may be a promising prospect given its ability to undergo prolonged passage and with similar therapeutic profiles as that of their MSC counterparts. However, the influence of iMSC in the interaction of cancer cells remains to be explored as such studies are not well established. In this study, we aim to differentiate iPSCs into MSC-like cells as a potential substitute for adult MSCs and evaluate its effect on non-small-cell lung cancer (NSCLC). METHODS: iMSCs were derived from iPSCs and validated with reference to the International Society of Cellular Therapy guidelines on MSC criteria. To create a stromal environment, the conditioned medium (CM) of iMSCs was harvested and applied for coculturing of NSCLC of H1975 at different concentrations. The H1975 was then harvested for RNA extraction and subjected to next-generation sequencing (NGS) for analysis. RESULTS: The morphology of iMSCs-CM-treated H1975 was different from an untreated H1975. Our NGS data suggest the occurrence of apoptotic events and the presence of cytokines from H1975's RNA that are treated with iMSCs-CM. CONCLUSION: Our results have shown that iMSCs may suppress the growth of H1975 by releasing proapoptotic cytokines into coculture media. Using iPSC-derived MSC models allows a deeper study of tumor cross talk between MSC and cancer cells that can be applied for potential future cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Células-Tronco Pluripotentes Induzidas , Neoplasias Pulmonares , Células-Tronco Mesenquimais , Diferenciação Celular , Citocinas , Humanos , RNA
19.
J Chin Med Assoc ; 85(4): 409-413, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35383703

RESUMO

Lung carcinoma (LC) is the third most common cancer diagnosis and accounted for the most cancer-related mortality worldwide in 2018. Based on the type of cells from which it originates, LC is commonly classified into non-small cell lung cancers (NSCLC) and small cell lung cancers (SCLC). NSCLC account for the majority of LC and can be further categories into adenocarcinoma, large cell carcinoma, and squamous cell carcinoma. Accurate classification of LC is critical for its adequate treatment and therapeutic outcome. Since NSCLC express more epidermal growth factor receptor (EGFR) with activation mutations, targeted therapy EGFR-tyrosine kinase inhibitors (TKIs) have been considered as primary option of NSCLC patients with activation EGFR mutation. In this review, we present the genetic alterations, reported mutations in EGFR, and TKIs treatment in NSCLC patients with an emphasis on the downstream signaling pathways in NSCLC progression. Among the signaling pathways identified, mitogen activation protein kinase (MAPK), known also as extracellular signal-regulated protein kinase (Erk) pathway, is the most investigated among the related pathways. EGFR activation leads to the autophosphorylation of its kinase domain and subsequent activation of Ras, phosphorylation of Raf and MEK1/2, and the activation of ERK1/2. Phosphatidylinositol 3-kinase (PI3K)/Akt is another signal pathway that regulates cell cycle and has been linked to NSCLC progression. Currently, three generations of EGFR TKIs have been developed as a first-line treatment of NSCLC patients with EGFR activation and mutation in which these treatment options will be further discussed in this review. The Supplementary Appendix for this article is available at http://links.lww.com/JCMA/A138.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Crescimento Epidérmico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Fosfatidilinositol 3-Quinases , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
20.
Cancers (Basel) ; 14(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205610

RESUMO

Circular RNAs (circRNAs) are noncoding products of backsplicing of pre-mRNAs which have been established to possess potent biological functions. Dysregulated circRNA expression has been linked to diseases including different types of cancer. Cancer progression is known to result from the dysregulation of several molecular mechanisms responsible for the maintenance of cellular and tissue homeostasis. The dysregulation of these processes is defined as cancer hallmarks, and the molecular pathways implicated in them are regarded as the targets of therapeutic interference. In this review, we summarize the literature on the investigation of circRNAs implicated in cancer hallmark molecular signaling. First, we present general information on the properties of circRNAs, such as their biogenesis and degradation mechanisms, as well as their basic molecular functions. Subsequently, we summarize the roles of circRNAs in the framework of each cancer hallmark and finally discuss the potential as therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA