Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1137783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937838

RESUMO

We investigated the efficacy of a small molecule ASR-600, an analog of Urolithin A (Uro A), on blocking androgen receptor (AR) and its splice variant AR-variant 7 (AR-V7) signaling in castration-resistant prostate cancer (CRPC). ASR-600 effectively suppressed the growth of AR+ CRPC cells by inhibiting AR and AR-V7 expressions; no effect was seen in AR- CRPC and normal prostate epithelial cells. Biomolecular interaction assays revealed ASR-600 binds to the N-terminal domain of AR, which was further confirmed by immunoblot and subcellular localization studies. Molecular studies suggested that ASR-600 promotes the ubiquitination of AR and AR-V7 resulting in the inhibition of AR signaling. Microsomal and plasma stability studies suggest that ASR-600 is stable, and its oral administration inhibits tumor growth in CRPC xenografted castrated and non-castrated mice. In conclusion, our data suggest that ASR-600 enhances AR ubiquitination in both AR+ and AR-V7 CRPC cells and inhibits their growth in vitro and in vivo models.

2.
Nat Commun ; 13(1): 3153, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672316

RESUMO

A distinct profile of NRAS mutants is observed in each tumor type. It is unclear whether these profiles are determined by mutagenic events or functional differences between NRAS oncoproteins. Here, we establish functional hallmarks of NRAS mutants enriched in human melanoma. We generate eight conditional, knock-in mouse models and show that rare melanoma mutants (NRAS G12D, G13D, G13R, Q61H, and Q61P) are poor drivers of spontaneous melanoma formation, whereas common melanoma mutants (NRAS Q61R, Q61K, or Q61L) induce rapid tumor onset with high penetrance. Molecular dynamics simulations, combined with cell-based protein-protein interaction studies, reveal that melanomagenic NRAS mutants form intramolecular contacts that enhance BRAF binding affinity, BRAF-CRAF heterodimer formation, and MAPK > ERK signaling. Along with the allelic series of conditional mouse models we describe, these results establish a mechanistic basis for the enrichment of specific NRAS mutants in human melanoma.


Assuntos
Melanoma , Proteínas Monoméricas de Ligação ao GTP/normas , Neoplasias Cutâneas , Animais , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/genética , Neoplasias Cutâneas/genética
3.
J Biol Chem ; 298(8): 102186, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753348

RESUMO

The recent development of mutant-selective inhibitors for the oncogenic KRASG12C allele has generated considerable excitement. These inhibitors covalently engage the mutant C12 thiol located within the phosphoryl binding loop of RAS, locking the KRASG12C protein in an inactive state. While clinical trials of these inhibitors have been promising, mechanistic questions regarding the reactivity of this thiol remain. Here, we show by NMR and an independent biochemical assay that the pKa of the C12 thiol is depressed (pKa ∼7.6), consistent with susceptibility to chemical ligation. Using a validated fluorescent KRASY137W variant amenable to stopped-flow spectroscopy, we characterized the kinetics of KRASG12C fluorescence changes upon addition of ARS-853 or AMG 510, noting that at low temperatures, ARS-853 addition elicited both a rapid first phase of fluorescence change (attributed to binding, Kd = 36.0 ± 0.7 µM) and a second, slower pH-dependent phase, taken to represent covalent ligation. Consistent with the lower pKa of the C12 thiol, we found that reversible and irreversible oxidation of KRASG12C occurred readily both in vitro and in the cellular environment, preventing the covalent binding of ARS-853. Moreover, we found that oxidation of the KRASG12C Cys12 to a sulfinate altered RAS conformation and dynamics to be more similar to KRASG12D in comparison to the unmodified protein, as assessed by molecular dynamics simulations. Taken together, these findings provide insight for future KRASG12C drug discovery efforts, and identify the occurrence of G12C oxidation with currently unknown biological ramifications.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Compostos de Sulfidrila , Cinética , Mutação , Oxirredução , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Diabetes ; 71(3): 538-553, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862200

RESUMO

Pancreastatin (PST), a chromogranin A-derived potent physiological dysglycemic peptide, regulates glucose/insulin homeostasis. We have identified a nonsynonymous functional PST variant (p.Gly297Ser; rs9658664) that occurs in a large section of human populations. Association analysis of this single nucleotide polymorphism with cardiovascular/metabolic disease states in Indian populations (n = 4,300 subjects) displays elevated plasma glucose, glycosylated hemoglobin, diastolic blood pressure, and catecholamines in Gly/Ser subjects as compared with wild-type individuals (Gly/Gly). Consistently, the 297Ser allele confers an increased risk (∼1.3-1.6-fold) for type 2 diabetes/hypertension/coronary artery disease/metabolic syndrome. In corroboration, the variant peptide (PST-297S) displays gain-of-potency in several cellular events relevant for cardiometabolic disorders (e.g., increased expression of gluconeogenic genes, increased catecholamine secretion, and greater inhibition of insulin-stimulated glucose uptake) than the wild-type peptide. Computational docking analysis and molecular dynamics simulations show higher affinity binding of PST-297S peptide with glucose-regulated protein 78 (GRP78) and insulin receptor than the wild-type peptide, providing a mechanistic basis for the enhanced activity of the variant peptide. In vitro binding assays validate these in silico predictions of PST peptides binding to GRP78 and insulin receptor. In conclusion, the PST 297Ser allele influences cardiovascular/metabolic phenotypes and emerges as a novel risk factor for type 2 diabetes/hypertension/coronary artery disease in human populations.


Assuntos
Doenças Cardiovasculares/genética , Cromogranina A/genética , Predisposição Genética para Doença/genética , Doenças Metabólicas/genética , Sequência de Aminoácidos , Animais , Catecolaminas/sangue , Linhagem Celular , Linhagem Celular Tumoral , Cromogranina A/química , Cromogranina A/metabolismo , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estudos de Associação Genética/métodos , Células Hep G2 , Humanos , Hipertensão/genética , Índia , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ratos , Receptor de Insulina/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38125869

RESUMO

Off-target binding is one of the primary causes of toxic side effects of drugs in clinical development, resulting in failures of clinical trials. While off-target drug binding is a known phenomenon, experimental identification of the undesired protein binders can be prohibitively expensive due to the large pool of possible biological targets. Here, we propose a new strategy combining chemical similarity principle and deep learning to enable proteome-wide mapping of compound-protein interactions. We have developed a pipeline to identify the targets of bioactive molecules by matching them with chemically similar annotated "bait" compounds and ranking them with deep learning. We have constructed a user-friendly web server for drug-target identification based on chemical similarity (DRIFT) to perform searches across annotated bioactive compound datasets, thus enabling high-throughput, multi-ligand target identification, as well as chemical fragmentation of target-binding moieties.

6.
J Biol Chem ; 297(3): 101040, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34352272

RESUMO

Ryanodine receptor type 1 (RyR1) releases Ca2+ ions from the sarcoplasmic reticulum of skeletal muscle cells to initiate muscle contraction. Multiple endogenous and exogenous effectors regulate RyR1, such as ATP, Ca2+, caffeine (Caf), and ryanodine. Cryo-EM identified binding sites for the three coactivators Ca2+, ATP, and Caf. However, the mechanism of coregulation and synergy between these activators remains to be determined. Here, we used [3H]ryanodine ligand-binding assays and molecular dynamics simulations to test the hypothesis that both the ATP- and Caf-binding sites communicate with the Ca2+-binding site to sensitize RyR1 to Ca2+. We report that either phosphomethylphosphonic acid adenylate ester (AMPPCP), a nonhydrolyzable ATP analog, or Caf can activate RyR1 in the absence or the presence of Ca2+. However, enhanced RyR1 activation occurred in the presence of Ca2+, AMPPCP, and Caf. In the absence of Ca2+, Na+ inhibited [3H]ryanodine binding without impairing RyR1 activation by AMPPCP and Caf. Computational analysis suggested that Ca2+-, ATP-, and Caf-binding sites modulate RyR1 protein stability through interactions with the carboxyterminal domain and other domains in the activation core. In the presence of ATP and Caf but the absence of Ca2+, Na+ is predicted to inhibit RyR1 by interacting with the Ca2+-binding site. Our data suggested that ATP and Caf binding affected the conformation of the Ca2+-binding site, and conversely, Ca2+ binding affected the conformation of the ATP- and Caf-binding sites. We conclude that Ca2+, ATP, and Caf regulate RyR1 through a network of allosteric interactions involving the Ca2+-, ATP-, and Caf-binding sites.


Assuntos
Trifosfato de Adenosina/metabolismo , Cafeína/metabolismo , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Cafeína/química , Cálcio/química , Células HEK293 , Humanos , Músculo Esquelético/química , Ligação Proteica
7.
Front Mol Biosci ; 8: 707439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307463

RESUMO

RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound "OFF" state and GTP-bound "ON" state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound "ON" state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.

8.
Cancer Immunol Res ; 9(4): 441-453, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33547226

RESUMO

Chimeric antigen receptor (CAR) tonic signaling, defined as spontaneous activation and release of proinflammatory cytokines by CAR-T cells, is considered a negative attribute because it leads to impaired antitumor effects. Here, we report that CAR tonic signaling is caused by the intrinsic instability of the mAb single-chain variable fragment (scFv) to promote self-aggregation and signaling via the CD3ζ chain incorporated into the CAR construct. This phenomenon was detected in a CAR encoding either CD28 or 4-1BB costimulatory endodomains. Instability of the scFv was caused by specific amino acids within the framework regions (FWR) that can be identified by computational modeling. Substitutions of the amino acids causing instability, or humanization of the FWRs, corrected tonic signaling of the CAR, without modifying antigen specificity, and enhanced the antitumor effects of CAR-T cells. Overall, we demonstrated that tonic signaling of CAR-T cells is determined by the molecular instability of the scFv and that computational analyses of the scFv can be implemented to correct the scFv instability in CAR-T cells with either CD28 or 4-1BB costimulation.


Assuntos
Antígenos CD28/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Citocinas/biossíntese , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Transdução de Sinais , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Lett ; 506: 107-119, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33600895

RESUMO

Targeting the metastatic process to prevent disease dissemination in cancer remains challenging. One step in the metastatic cascade involves cancer cells transiting through the vascular endothelium after inflammation has increased the permeability of this cellular layer. Reducing inflammation-mediated gaps in the vascular endothelium could potentially be used to retard metastasis. This study describes the development of a novel ASR396-containing nanoparticle designed to activate the Sphingosine-1-Phosphate Receptor 1 (S1PR1) in order to tighten the junctions between the endothelial cells lining the vascular endothelium thereby inhibiting metastasis. ASR396 was derived from the S1PR1 agonist SEW2871 through chemical modification enabling the new compound to be loaded into a nanoliposome. ASR396 retained S1PR1 binding activity and the nanoliposomal formulation (nanoASR396) made it systemically bioavailable upon intravenous injection. Studies conducted in microvessels demonstrated that nanoASR396 significantly attenuated inflammatory mediator-induced permeability increase through the S1PR1 activation. Similarly, nanoASR396 inhibited gap formation mediated by inflammatory agents on an endothelial cell monolayer by decreasing levels of phosphorylated myosin light chain protein thereby inhibiting cellular contractility. In animal models, nanoASR396 inhibited lung metastasis by up to 80%, indicating its potential for retarding melanoma metastasis. Thus, a novel bioavailable nanoparticle-based S1PR1 agonist has been developed to negate the effects of inflammatory mediators on the vascular endothelium in order to reduce the metastatic dissemination of cancer cells.


Assuntos
Células Endoteliais/metabolismo , Cadeias Leves de Miosina/metabolismo , Metástase Neoplásica/prevenção & controle , Receptores de Esfingosina-1-Fosfato/fisiologia , Animais , Permeabilidade Capilar , Linhagem Celular Tumoral , Humanos , Lipossomos , Camundongos , Nanopartículas , Oxidiazóis/farmacologia , Fosforilação , Transdução de Sinais/fisiologia , Receptores de Esfingosina-1-Fosfato/agonistas , Tiofenos/farmacologia
10.
Mol Cancer Ther ; 19(12): 2422-2431, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33087513

RESUMO

Notch1 activation triggers significant oncogenic signaling that manifests as enhanced metastatic potential and tumorigenesis in colorectal cancer. Novel small-molecule inhibitors, mainly plant-derived analogs, have low toxicity profiles and higher bioavailability. In this study, we have developed a small molecule, ASR490, by modifying structure of naturally occurring compound Withaferin A. ASR490 showed a growth-inhibitory potential by downregulating Notch1 signaling in HCT116 and SW620 cell lines. Docking studies and thermal shift assays confirmed that ASR490 binds to Notch1, whereas no changes in Notch2 and Notch3 expression were seen in colorectal cancer cells. Notch1 governs epithelial-to-mesenchymal transition signaling and is responsible for metastasis, which was abolished by ASR490 treatment. To further confirm the therapeutic potential of ASR490, we stably overexpressed Notch1 in HCT-116 cells and determined its inhibitory potential in transfected colorectal cancer (Notch1/HCT116) cells. ASR490 effectively prevented cell growth in both the vector (P = 0.005) and Notch1 (P = 0.05) transfectants. The downregulation of Notch1 signaling was evident, which corresponded with downregulation of mesenchymal markers, including N-cadherin and ß-catenin and induction of E-cadherin in HCT-116 transfectants. Intraperitoneal administration of a 1% MTD dose of ASR490 (5 mg/kg) effectively suppressed the tumor growth in control (pCMV/HCT116) and Notch1/HCT116 in xenotransplanted mice. In addition, downregulation of Notch1 and survival signaling in ASR-treated tumors confirmed the in vitro results. In conclusion, ASR490 appears to be a potent agent that can inhibit Notch1 signaling in colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor Notch1/genética , Biomarcadores , Linhagem Celular Tumoral , Células HCT116 , Humanos , Receptor Notch1/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo
11.
Sci Rep ; 10(1): 8411, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439929

RESUMO

Rapid spread of ZIKA virus (ZIKV) and its association with severe birth defects have raised worldwide concern. Recent studies have shown that ZIKV retains its infectivity and remains structurally stable at temperatures up to 40 °C, unlike dengue and other flaviviruses. In spite of recent cryo-EM structures that showed similar architecture of ZIKA and dengue virus (DENV) E protein shells, little is known that makes ZIKV so temperature insensitive. Here, we attempt to unravel the molecular basis of greater thermal stability of ZIKV over DENV2 by executing atomistic molecular dynamics (MD) simulations on the viral E protein shells at 37 °C. Our results suggest that ZIKA E protein shell retains its structural integrity through stronger inter-raft communications facilitated by a series of electrostatic and H-bonding interactions among multiple inter-raft residues. In comparison, the DENV2 E protein shell surface was loosly packed that exhibited holes at all 3-fold vertices, in close agreement with another EM structure solved at 37 °C. The residue-level information obtained from our study could pave way for designing small molecule inhibitors and specific antibodies to inhibit ZIKV E protein assembly and membrane fusion.


Assuntos
Vírus da Dengue/fisiologia , Temperatura Alta , Proteínas do Envelope Viral/metabolismo , Zika virus/fisiologia , Biologia Computacional , Dengue/terapia , Dengue/transmissão , Resposta ao Choque Térmico/fisiologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Eletricidade Estática , Infecção por Zika virus/terapia , Infecção por Zika virus/transmissão
12.
Mol Cancer Ther ; 19(2): 447-459, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31754071

RESUMO

The aldehyde dehydrogenases (ALDH) are a major family of detoxifying enzymes that contribute to cancer progression and therapy resistance. ALDH overexpression is associated with a poor prognosis in many cancer types. The use of multi-ALDH isoform or isoform-specific ALDH inhibitors as anticancer agents is currently hindered by the lack of viable candidates. Most multi-ALDH isoform inhibitors lack bioavailability and are nonspecific or toxic, whereas most isoform-specific inhibitors are not effective as monotherapy due to the overlapping functions of ALDH family members. The present study details the development of a novel, potent, multi-isoform ALDH inhibitor, called KS100. The rationale for drug development was that inhibition of multiple ALDH isoforms might be more efficacious for cancer compared with isoform-specific inhibition. Enzymatic IC50s of KS100 were 207, 1,410, and 240 nmol/L toward ALDH1A1, 2, and 3A1, respectively. Toxicity of KS100 was mitigated by development of a nanoliposomal formulation, called NanoKS100. NanoKS100 had a loading efficiency of approximately 69% and was stable long-term. NanoKS100 was 5-fold more selective for killing melanoma cells compared with normal human fibroblasts. NanoKS100 administered intravenously at a submaximal dose (3-fold lower) was effective at inhibiting xenografted melanoma tumor growth by approximately 65% without organ-related toxicity. Mechanistically, inhibition by KS100 significantly reduced total cellular ALDH activity to increase reactive oxygen species generation, lipid peroxidation, and accumulation of toxic aldehydes leading to apoptosis and autophagy. Collectively, these data suggest the successful preclinical development of a nontoxic, bioavailable, nanoliposomal formulation containing a novel multi-ALDH isoform inhibitor effective in the treatment of cancer.


Assuntos
Família Aldeído Desidrogenase 1/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Melanoma/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Transfecção
13.
Am J Physiol Cell Physiol ; 317(2): C358-C365, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166712

RESUMO

Cryoelectron microscopy and mutational analyses have shown that type 1 ryanodine receptor (RyR1) amino acid residues RyR1-E3893, -E3967, and -T5001 are critical for Ca2+-mediated activation of skeletal muscle Ca2+ release channel. De novo missense mutation RyR1-Q3970K in the secondary binding sphere of Ca2+ was reported in association with central core disease (CCD) in a 2-yr-old boy. Here, we characterized recombinant RyR1-Q3970K mutant by cellular Ca2+ release measurements, single-channel recordings, and computational methods. Caffeine-induced Ca2+ release studies indicated that RyR1-Q3970K formed caffeine-sensitive, Ca2+-conducting channel in HEK293 cells. However, in single-channel recordings, RyR1-Q3970K displayed low Ca2+-dependent channel activity and greatly reduced activation by caffeine or ATP. A RyR1-Q3970E mutant corresponds to missense mutation RyR2-Q3925E associated with arrhythmogenic syndrome in cardiac muscle. RyR1-Q3970E also formed caffeine-induced Ca2+ release in HEK293 cells and exhibited low activity in the presence of the activating ligand Ca2+ but, in contrast to RyR1-Q3970K, was activated by ATP and caffeine in single-channel recordings. Computational analyses suggested distinct structural rearrangements in the secondary binding sphere of Ca2+ of the two mutants, whereas the interaction of Ca2+ with directly interacting RyR1 amino acid residues Glu3893, Glu3967, and Thr5001 was only minimally affected. We conclude that RyR1-Q3970 has a critical role in Ca2+-dependent activation of RyR1 and that a missense RyR1-Q3970K mutant may give rise to myopathy in skeletal muscle.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sítios de Ligação , Cafeína/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana , Músculo Esquelético/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Sci Rep ; 9(1): 7615, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110208

RESUMO

There is still no successful strategy to treat Huntington's disease, an inherited autosomal disorder associated with the aggregation of mutated forms of the huntingtin protein containing polyglutamine tracts with more than 36 repeats. Recent experimental evidence is challenging the conventional view of the disease by revealing transcellular transfer of mutated huntingtin proteins which are able to seed oligomers involving wild type forms of the protein. Here we decipher the molecular mechanism of this unconventional heterogeneous oligomerization by performing discrete molecular dynamics simulations. We identify the most probable oligomer conformations and the molecular regions that can be targeted to destabilize them. Our computational findings are complemented experimentally by fluorescence-lifetime imaging microscopy/fluorescence resonance energy transfer (FLIM-FRET) of cells co-transfected with huntingtin proteins containing short and large polyglutamine tracts. Our work clarifies the structural features responsible for heterogeneous huntingtin aggregation with possible implications to contrast the prion-like spreading of Huntington's disease.


Assuntos
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mutação/genética , Peptídeos/metabolismo , Prenilação de Proteína/genética , Transfecção/métodos
15.
J Biol Chem ; 293(50): 19501-19509, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30341173

RESUMO

Cryo-electron micrograph studies recently have identified a Ca2+-binding site in the 2,200-kDa ryanodine receptor ion channel (RyR1) in skeletal muscle. To clarify the role of this site in regulating RyR1 activity, here we applied mutational, electrophysiological, and computational methods. Three amino acid residues that interact directly with Ca2+ were replaced, and these RyR1 variants were expressed in HEK293 cells. Single-site RyR1-E3893Q, -E3893V, -E3967Q, -E3967V, and -T5001A variants and double-site RyR1-E3893Q/E3967Q and -E3893V/E3967V variants displayed cellular Ca2+ release in response to caffeine, which indicated that they retained functionality as caffeine-sensitive, Ca2+-conducting channels in the HEK293 cell system. Using [3H]ryanodine binding and single-channel measurements of membrane isolates, we found that single- and double-site RyR1-E3893 and -E3967 variants are not activated by Ca2+ We also noted that RyR1-E3893Q/E3967Q and -E3893V/E3967V variants maintain caffeine- and ATP-induced activation and that RyR1-E3893Q/E3967Q is inhibited by Mg2+ and elevated Ca2+ RyR1-T5001A exhibited decreased Ca2+ sensitivity compared with WT-RyR1 in single-channel measurements. Computational methods suggested that electrostatic interactions between Ca2+ and negatively charged glutamate residues have a critical role in transducing the functional effects of Ca2+ on RyR1. We conclude that the removal of negative charges in the recently identified RyR1 Ca2+-binding site impairs RyR1 activation by physiological Ca2+ concentrations and results in loss of binding to Ca2+ or reduced Ca2+ affinity of the binding site.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química
16.
J Biol Chem ; 289(7): 4455-69, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24338022

RESUMO

Pancreastatin (PST), a chromogranin A-derived peptide, is a potent physiological inhibitor of glucose-induced insulin secretion. PST also triggers glycogenolysis in liver and reduces glucose uptake in adipocytes and hepatocytes. Here, we probed for genetic variations in PST sequence and identified two variants within its functionally important carboxyl terminus domain: E287K and G297S. To understand functional implications of these amino acid substitutions, we tested the effects of wild-type (PST-WT), PST-287K, and PST-297S peptides on various cellular processes/events. The rank order of efficacy to inhibit insulin-stimulated glucose uptake was: PST-297S > PST-287K > PST-WT. The PST peptides also displayed the same order of efficacy for enhancing intracellular nitric oxide and Ca(2+) levels in various cell types. In addition, PST peptides activated gluconeogenic genes in the following order: PST-297S ≈ PST-287K > PST-WT. Consistent with these in vitro results, the common PST variant allele Ser-297 was associated with significantly higher (by ∼17 mg/dl, as compared with the wild-type Gly-297 allele) plasma glucose level in our study population (n = 410). Molecular modeling and molecular dynamics simulations predicted the following rank order of α-helical content: PST-297S > PST-287K > PST-WT. Corroboratively, circular dichroism analysis of PST peptides revealed significant differences in global structures (e.g. the order of propensity to form α-helix was: PST-297S ≈ PST-287K > PST-WT). This study provides a molecular basis for enhanced potencies/efficacies of human PST variants (likely to occur in ∼300 million people worldwide) and has quantitative implications for inter-individual variations in glucose/insulin homeostasis.


Assuntos
Variação Genética , Mutação de Sentido Incorreto , Hormônios Pancreáticos , Células 3T3-L1 , Adulto , Substituição de Aminoácidos , Animais , Glicemia/metabolismo , Dicroísmo Circular , Feminino , Células Hep G2 , Humanos , Insulina/sangue , Masculino , Camundongos , Hormônios Pancreáticos/sangue , Hormônios Pancreáticos/química , Hormônios Pancreáticos/genética , Hormônios Pancreáticos/farmacologia , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA