Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(5): e0241522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190401

RESUMO

The life-threatening disease tularemia is caused by Francisella tularensis, an intracellular Gram-negative bacterial pathogen. Due to the high mortality rates of the disease, as well as the low respiratory infectious dose, F. tularensis is categorized as a Tier 1 bioterror agent. The identification and isolation from clinical blood cultures of F. tularensis are complicated by its slow growth. Iron was shown to be one of the limiting nutrients required for F. tularensis metabolism and growth. Bacterial growth was shown to be restricted or enhanced in the absence or addition of iron. In this study, we tested the beneficial effect of enhanced iron concentrations on expediting F. tularensis blood culture diagnostics. Accordingly, bacterial growth rates in blood cultures with or without Fe2+ supplementation were evaluated. Growth quantification by direct CFU counts demonstrated significant improvement of growth rates of up to 6 orders of magnitude in Fe2+-supplemented media compared to the corresponding nonmodified cultures. Fe2+ supplementation significantly shortened incubation periods for successful diagnosis and isolation of F. tularensis by up to 92 h. This was achieved in a variety of blood culture types in spite of a low initial bacterial inoculum representative of low levels of bacteremia. These improvements were demonstrated with culture of either Francisella tularensis subsp. tularensis or subsp. holarctica in all examined commercial blood culture types routinely used in a clinical setup. Finally, essential downstream identification assays, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), immunofluorescence, or antibiotic susceptibility tests, were not affected in the presence of Fe2+. To conclude, supplementing blood cultures with Fe2+ enables a significant shortening of incubation times for F. tularensis diagnosis, without affecting subsequent identification or isolation assays. IMPORTANCE In this study, we evaluated bacterial growth rates of Francisella tularensis strains in iron (Fe)-enriched blood cultures as a means of improving and accelerating bacterial growth. The shortening of the culturing time should facilitate rapid pathogen detection and isolation, positively impacting clinical diagnosis and enabling prompt onset of efficient therapy.


Assuntos
Francisella tularensis , Tularemia , Humanos , Francisella tularensis/metabolismo , Hemocultura , Tularemia/diagnóstico , Tularemia/metabolismo , Tularemia/microbiologia , Ferro/metabolismo , Antibacterianos/farmacologia
2.
Vaccines (Basel) ; 10(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36298458

RESUMO

The design of efficient vaccines for long-term protective immunity against pathogens represents an objective of utmost public health priority. In general, live attenuated vaccines are considered to be more effective than inactivated pathogens, yet potentially more reactogenic. Accordingly, inactivation protocols which do not compromise the pathogen's ability to elicit protective immunity are highly beneficial. One of the sentinel mechanisms of the host innate immune system relies on the production of reactive nitrogen intermediates (RNI), which efficiently inactivate pathogens. Peroxynitrite (PN) is a prevalent RNI, assembled spontaneously upon the interaction of nitric oxide (NO) with superoxide. PN exerts its bactericidal effect by via the efficient oxidation of a broad range of biological molecules. Furthermore, the interaction of PN with proteins results in structural/chemical modifications, such as the oxidation of tryptophan, tyrosine, and cysteine residues, as well as the formation of carbonyl, dityrosine, and nitrotyrosine (NT). In addition to their role in innate immunity, these PN-mediated modifications of pathogen components may also augment the antigenicity of pathogen peptides and proteins, hence contributing to specific humoral responses. In the study reported here, a novel approach for vaccine development, consisting of pathogen inactivation by PN, combined with increased immunity of NT-containing peptides, is implemented as a proof-of-concept for vaccination against the intracellular pathogen Francisella tularensis (F. tularensis). In vivo experiments in a murine model of tularemia confirm that PN-inactivated F. tularensis formulations may rapidly stimulate innate and adaptive immune cells, conferring efficient protection against a lethal challenge, superior to that elicited by bacteria inactivated by the widely used formalin treatment.

3.
Pathogens ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34451403

RESUMO

HLA transgenic mice are instrumental for evaluation of human-specific immune responses to viral infection. Mice do not develop COVID-19 upon infection with SARS-CoV-2 due to the strict tropism of the virus to the human ACE2 receptor. The aim of the current study was the implementation of an adenovirus-mediated infection protocol for human ACE2 expression in HLA transgenic mice. Transient pulmonary expression of the human ACE2 receptor in these mice results in their sensitisation to SARS-CoV-2 infection, consequently providing a valuable animal model for COVID-19. Infection results in a transient loss in body weight starting 3 days post-infection, reaching 20-30% loss of weight at day 7 and full recovery at days 11-13 post-infection. The evolution of the disease revealed high reproducibility and very low variability among individual mice. The method was implemented in two different strains of HLA immunized mice. Infected animals developed strong protective humoral and cellular immune responses specific to the viral spike-protein, strictly depending on the adenovirus-mediated human ACE2 expression. Convalescent animals were protected against a subsequent re-infection with SARS-CoV-2, demonstrating that the model may be applied for assessment of efficacy of anti-viral immune responses.

4.
Antibiotics (Basel) ; 10(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401634

RESUMO

Yersinia pestis is a Gram-negative pathogen that causes plague, a devastating disease that kills millions worldwide. Although plague is efficiently treatable by recommended antibiotics, the time of antibiotic therapy initiation is critical, as high mortality rates have been observed if treatment is delayed for longer than 24 h after symptom onset. To overcome the emergence of antibiotic resistant strains, we attempted a systematic screening of Food and Drug Administration (FDA)-approved drugs to identify alternative compounds which may possess antibacterial activity against Y. pestis. Here, we describe a drug-repurposing approach, which led to the identification of two antibiotic-like activities of the anticancer drugs bleomycin sulfate and streptozocin that have the potential for designing novel antiplague therapy approaches. The inhibitory characteristics of these two drugs were further addressed as well as their efficiency in affecting the growth of Y. pestis strains resistant to doxycycline and ciprofloxacin, antibiotics recommended for plague treatment.

5.
Am J Trop Med Hyg ; 101(3): 580-584, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287043

RESUMO

A previously healthy young man presented with a chronic cavitary pulmonary infection that began while in Goa, India. Burkholderia pseudomallei was cultured from sputum samples. The infection fully resolved after prolonged antibiotic treatment. Other than traveling during the monsoon season, extensive use of well-water for water-pipe smoking of cannabis was identified as a possible risk factor for infection. This is one of the first reports of travel-associated melioidosis from India. Genomic and immunological characterization suggested that the B. pseudomallei isolate collected from the reported case exhibited limited similarity to other B. pseudomallei strains.


Assuntos
Doenças Transmissíveis Importadas/diagnóstico , Melioidose/diagnóstico , Viagem , Adulto , Antibacterianos/uso terapêutico , Burkholderia pseudomallei/isolamento & purificação , Doenças Transmissíveis Importadas/microbiologia , Humanos , Índia , Israel , Masculino , Melioidose/tratamento farmacológico , Fatores de Risco , Escarro/microbiologia
6.
PLoS Negl Trop Dis ; 13(6): e0007449, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170147

RESUMO

We have previously shown that the cell morphogenesis NlpD lipoprotein is essential for virulence of the plague bacteria, Yersinia pestis. To elucidate the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis of the wild-type Y. pestis strain and an nlpD mutant under conditions mimicking early stages of infection. The analysis suggested that NlpD is involved in three phenomena: (i) Envelope stability/integrity evidenced by compensatory up-regulation of the Cpx and Psp membrane stress-response systems in the mutant; (ii) iron acquisition, supported by modulation of iron metabolism genes and by limited growth in iron-deprived medium; (iii) activity of the twin-arginine (Tat) system, which translocates folded proteins across the cytoplasmic membrane. Virulence studies of Y. pestis strains mutated in individual Tat components clearly indicated that the Tat system is central in Y. pestis pathogenicity and substantiated the assumption that NlpD essentiality in iron utilization involves the activity of the Tat system. This study reveals a new role for NlpD in Tat system activity and iron assimilation suggesting a modality by which this lipoprotein is involved in Y. pestis pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas de Inativação de Genes , Ferro/metabolismo , Lipoproteínas/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Fatores de Virulência/metabolismo , Yersinia pestis/enzimologia , Yersinia pestis/metabolismo , Animais , Proteínas de Bactérias/genética , Transporte Biológico , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Camundongos , Fatores de Virulência/genética , Yersinia pestis/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-28680860

RESUMO

Prompt and effective elicitation of protective immunity is highly relevant for cases of rapidly deteriorating fatal diseases, such as plague, which is caused by Yersinia pestis. Here, we assessed the potential of a live vaccine to induce rapid protection against this infection. We demonstrated that the Y. pestis EV76 live vaccine protected mice against an immediate lethal challenge, limiting the multiplication of the virulent pathogen and its dissemination into circulation. Ex vivo analysis of Y. pestis growth in serum derived from EV76-immunized mice revealed that an antibacterial activity was produced rapidly. This activity was mediated by the host heme- and iron-binding proteins hemopexin and transferrin, and it occurred in strong correlation with the kinetics of hemopexin induction in vivo. We suggest a new concept in which a live vaccine is capable of rapidly inducing iron nutritional immunity, thus limiting the propagation of pathogens. This concept could be exploited to design novel therapeutic interventions.


Assuntos
Ferro/metabolismo , Peste/prevenção & controle , Vacinas Atenuadas/imunologia , Yersinia pestis/imunologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Endopeptidase K , Feminino , Hemopexina/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Peste/microbiologia , Transferrina/metabolismo , Vacinas Atenuadas/administração & dosagem , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/patogenicidade
8.
Toxins (Basel) ; 8(8)2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27548219

RESUMO

Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules.


Assuntos
Adenilil Ciclases/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/enzimologia , Toxinas Bacterianas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Trifosfato de Adenosina/metabolismo , Bacillus anthracis/genética , Indóis/metabolismo , Cinética , Luciferases/metabolismo , Medições Luminescentes , Pirazinas/metabolismo , Reprodutibilidade dos Testes
9.
Mol Microbiol ; 81(6): 1542-59, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21801240

RESUMO

We demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B. anthracis toxins LT (lethal toxin) and ET (oedema toxin) as well as the capsule, show a decrease of over six orders of magnitude in virulence (lethal dose 50% = 3 × 10(8) spores, in the guinea pig model of anthrax), as compared with the parental wild-type strain. This unprecedented extent of loss of virulence in B. anthracis, as a consequence of deletion of a single gene, as well as all other phenotypic defects associated with htrA mutation, are restored in their corresponding trans-complemented strains. It is suggested that the loss of virulence is due to increased susceptibility of the ΔhtrA bacteria to stress insults encountered in the host. On a practical note, it is demonstrated that the attenuated Vollum ΔhtrA is highly efficacious in protecting guinea pigs against a lethal anthrax challenge.


Assuntos
Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Serina Endopeptidases/metabolismo , Estresse Fisiológico , Fatores de Virulência/metabolismo , Animais , Antraz/microbiologia , Antraz/patologia , Antígenos de Bactérias/metabolismo , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Bacillus anthracis/efeitos da radiação , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/metabolismo , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Etanol/toxicidade , Técnicas de Inativação de Genes , Teste de Complementação Genética , Cobaias , Temperatura Alta , Macrófagos/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Pressão Osmótica , Estresse Oxidativo , Proteoma/análise , Serina Endopeptidases/genética , Análise de Sobrevida , Virulência , Fatores de Virulência/genética
10.
Mol Microbiol ; 70(4): 983-99, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18826411

RESUMO

Three iron-regulated surface determinant (Isd) proteins, containing NEAr Transporter (NEAT) domains (GBAA4789-7), constitute part of an eight-member Bacillus anthracis operon. GBAA4789 (IsdC), previously characterized by others as a haem-binding protein, and two novel Isd proteins characterized in this study, GBAA4788 (IsdJ) and GBAA4787 (IsdK) proteins, can be translated from two alternative overlapping transcriptional units. The three NEAT-containing Isd proteins are shown to be expressed in vivo during B. anthracis infection. Expression in vitro is regulated by iron ions independent of the virulence plasmids pXO1 and pXO2, yet their presence affects the range of response to iron ion concentration. The expression of IsdC, J and K is strongly repressed under high CO(2) tension, conditions that are optimal for B. anthracis toxin and capsule expression, suggesting that these Isd proteins are elements of a B. anthracis'air-regulon'. Deletion mutants of isdC, isdK or the entire isdCJK locus are as virulent and pathogenic to guinea pigs as the fully virulent wild-type Vollum strain. The isdC-deleted mutant is defective in sequestration of haemin, consistent with previous biochemical observations, while the DeltaisdK mutant is defective in haemoglobin uptake. Studies with recombinant IsdK demonstrate specific binding to haemoglobin.


Assuntos
Bacillus anthracis/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Animais , Antraz/microbiologia , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidade , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , DNA Bacteriano/genética , Genes Bacterianos , Cobaias , Heme/metabolismo , Hemoglobinas/metabolismo , Mutação , Fases de Leitura Aberta , Óperon , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Virulência/genética
11.
Infect Immun ; 74(7): 3987-4001, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16790772

RESUMO

Bacillus anthracis proteins that possess antigenic properties and are able to evoke an immune response were identified by a reductive genomic-serologic screen of a set of in silico-preselected open reading frames (ORFs). The screen included in vitro expression of the selected ORFs by coupled transcription and translation of linear PCR-generated DNA fragments, followed by immunoprecipitation with antisera from B. anthracis-infected animals. Of the 197 selected ORFs, 161 were chromosomal and 36 were on plasmids pXO1 and pXO2, and 138 of the 197 ORFs had putative functional annotations (known ORFs) and 59 had no assigned functions (unknown ORFs). A total of 129 of the known ORFs (93%) could be expressed, whereas only 38 (64%) of the unknown ORFs were successfully expressed. All 167 expressed polypeptides were subjected to immunoprecipitation with the anti-B. anthracis antisera, which revealed 52 seroreactive immunogens, only 1 of which was encoded by an unknown ORF. The high percentage of seroreactive ORFs among the functionally annotated ORFs (37%; 51/129) attests to the predictive value of the bioinformatic strategy used for vaccine candidate selection. Furthermore, the experimental findings suggest that surface-anchored proteins and adhesins or transporters, such as cell wall hydrolases, proteins involved in iron acquisition, and amino acid and oligopeptide transporters, have great potential to be immunogenic. Most of the seroreactive ORFs that were tested as DNA vaccines indeed appeared to induce a humoral response in mice. We list more than 30 novel B. anthracis immunoreactive virulence-related proteins which could be useful in diagnosis, pathogenesis studies, and future anthrax vaccine development.


Assuntos
Vacinas contra Antraz/genética , Vacinas contra Antraz/imunologia , Antraz/microbiologia , Bacillus anthracis/imunologia , Genoma Bacteriano/imunologia , Genômica , Fases de Leitura Aberta/imunologia , Vacinas de DNA/imunologia , Animais , Antraz/imunologia , Antraz/prevenção & controle , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/fisiologia , Bacillus anthracis/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/imunologia , Biologia Computacional/métodos , Cobaias , Soros Imunes/sangue , Soros Imunes/genética , Camundongos , Camundongos Endogâmicos ICR , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/fisiologia , Coelhos , Vacinas de DNA/genética
12.
Mol Microbiol ; 58(2): 533-51, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16194238

RESUMO

Here we describe the characterization of a lipoprotein previously proposed as a potential Bacillus anthracis virulence determinant and vaccine candidate. This protein, designated MntA, is the solute-binding component of a manganese ion ATP-binding cassette transporter. Coupled proteomic-serological screen of a fully virulent wild-type B. anthracis Vollum strain, confirmed that MntA is expressed both in vitro and during infection. Expression of MntA is shown to be independent of the virulence plasmids pXO1 and pXO2. An mntA deletion, generated by allelic replacement, results in complete loss of MntA expression and its phenotypic analysis revealed: (i) impaired growth in rich media, alleviated by manganese supplementation; (ii) increased sensitivity to oxidative stress; and (iii) delayed release from cultured macrophages. The DeltamntA mutant expresses the anthrax-associated classical virulence factors, lethal toxin and capsule, in vitro as well as in vivo, and yet the mutation resulted in severe attenuation; a 10(4)-fold drop in LD(50) in a guinea pig model. MntA expressed in trans allowed to restore, almost completely, the virulence of the DeltamntA B. anthracis strain. We propose that MntA is a novel B. anthracis virulence determinant essential for the development of anthrax disease, and that B. anthracisDeltamntA strains have the potential to serve as platform for future live attenuated vaccines.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidade , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Bacillus anthracis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células Cultivadas , Feminino , Cobaias , Humanos , Ferro/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Manganês/metabolismo , Dados de Sequência Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Proteoma/análise , Alinhamento de Sequência
13.
Proteomics ; 4(3): 677-91, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14997491

RESUMO

Bacillus anthracis is the causative agent of anthrax disease. Improvement of existing anthrax vaccines, which are currently based on the administration of Protective Antigen (the highly immunogenic nontoxic subunit of the bacterial toxin) may entail other bacterial immunogenic elements, part of which are predicted to reside on the surface of bacterial cells. In the present study, membranal proteins extracted from a stationary-phase culture of a nonvirulent B. anthracis strain, devoid of the native virulence plasmids pXO1 and pXO2, were separated by two-dimensional electrophoresis (2-DE) and a characteristic protein map was defined. The proteomic analysis allowed matrix-assisted laser desorption/ionization-time of flight mass spectrometry-assisted identification of 86 protein spots which represent the product of 30 individual open reading frames (ORF). Among these, a prevalent class of proteins was the S-layer proteins (which were found to represent more than 75% of the B. anthracis membranal fraction) and proteins containing S-layer homology (SLH)-membranal localization domains. Five novel SLH proteins, previously inferred only from bioinformatic ORF analysis (draft genome sequence), were identified and one was shown to be a highly abundant membranal protein. Western blots of the 2-DE gels were probed with sera from convalescent rabbits and guinea pigs infected with virulent B. anthracis (Vollum strain). This analysis revealed that B. anthracis immune animals exhibit antibodies against at least 14 distinct membranal proteins present in the 2-DE map, establishing that these proteins are expressed in vivo and are able to elicit an immune response. The identification of the protein components of the B. anthracis membranal fraction, as well as the establishment of their potential immunogenicity, underscore the strength of the proteomic approach for identifying molecules which may serve for further analysis of immune and protective abilities.


Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/química , Peptídeos/química , Proteoma , Sequência de Aminoácidos , Animais , Western Blotting , Membrana Celular/metabolismo , Cromossomos/ultraestrutura , DNA/metabolismo , Bases de Dados como Assunto , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Cobaias , Dados de Sequência Molecular , Fases de Leitura Aberta , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Proteoma/metabolismo , Coelhos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/farmacologia , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA