RESUMO
OBJECTIVE: This study evaluates the safety/efficacy of sabatolimab plus spartalizumab in patients with melanoma or non-small cell lung cancer (NSCLC). DESIGN, SETTING AND PARTICIPANTS: This is a phase 1-1b/2, open-label, multinational, multicentre study of patients with advanced/metastatic melanoma or NSCLC with ≥1 measurable lesion. INTERVENTIONS: Patients were given sabatolimab 800 mg every 4 weeks plus spartalizumab 400 mg every 4 weeks until unacceptable toxicity, disease progression and/or treatment discontinuation. OUTCOME MEASURES: The phase 2 primary outcome measure was overall response rate and secondary objectives included evaluation of the safety, tolerability, efficacy and pharmacokinetics of sabatolimab in combination with spartalizumab. RESULTS: 33 patients (melanoma n=16, NSCLC n=17) received sabatolimab plus spartalizumab. 31 (94%) experienced ≥1 adverse event (AE); 15 (46%) experienced grade 3/4 events. The most frequent grade ≥3 AEs for NSCLC were anaemia, dyspnoea and pneumonia (each n=2, 12%); for patients with melanoma, the most frequent grade ≥3 AEs were physical health deterioration, hypokalaemia, hypophosphataemia, pathological fracture and tumour invasion (each n=1; 6%). One (3%) patient discontinued treatment due to AE. Stable disease was seen in three patients with melanoma (19%) and six patients with NSCLC (35%). Median progression-free survival was 1.8 (90% CI 1.7 to 1.9) and 1.7 (90% CI 1.1 to 3.4) months for patients with melanoma and NSCLC, respectively. Patients with stable disease had higher expression levels of CD8, LAG3, programmed death-ligand 1 and anti-T-cell immunoglobulin and mucin-domain containing-3 at baseline. The pharmacokinetics profile of sabatolimab was consistent with the phase 1 study. CONCLUSIONS: Sabatolimab plus spartalizumab was well tolerated in patients with advanced/metastatic melanoma or NSCLC who had progressed following antiprogrammed death-1/antiprogrammed death-ligand 1 treatment. Limited antitumour activity was observed. The tolerability of sabatolimab administration supports the potential to explore treatment with sabatolimab in various combination regimens and across a spectrum of tumour types. TRIAL REGISTRATION NUMBER: NCT02608268.
Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Feminino , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacocinética , Melanoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: Sickle cell disease is caused by a defect in the ß-globin subunit of adult hemoglobin. Sickle hemoglobin polymerizes under hypoxic conditions, producing deformed red cells that hemolyze and cause vaso-occlusion that results in progressive organ damage and early death. Elevated fetal hemoglobin levels in red cells protect against complications of sickle cell disease. OTQ923, a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-edited CD34+ hematopoietic stem- and progenitor-cell (HSPC) product, has a targeted disruption of the HBG1 and HBG2 (γ-globin) gene promoters that increases fetal hemoglobin expression in red-cell progeny. METHODS: We performed a tiling CRISPR-Cas9 screen of the HBG1 and HBG2 promoters by electroporating CD34+ cells obtained from healthy donors with Cas9 complexed with one of 72 guide RNAs, and we assessed the fraction of fetal hemoglobin-immunostaining erythroblasts (F cells) in erythroid-differentiated progeny. The gRNA resulting in the highest level of F cells (gRNA-68) was selected for clinical development. We enrolled participants with severe sickle cell disease in a multicenter, phase 1-2 clinical study to assess the safety and adverse-effect profile of OTQ923. RESULTS: In preclinical experiments, CD34+ HSPCs (obtained from healthy donors and persons with sickle cell disease) edited with CRISPR-Cas9 and gRNA-68 had sustained on-target editing with no off-target mutations and produced high levels of fetal hemoglobin after in vitro differentiation or xenotransplantation into immunodeficient mice. In the study, three participants received autologous OTQ923 after myeloablative conditioning and were followed for 6 to 18 months. At the end of the follow-up period, all the participants had engraftment and stable induction of fetal hemoglobin (fetal hemoglobin as a percentage of total hemoglobin, 19.0 to 26.8%), with fetal hemoglobin broadly distributed in red cells (F cells as a percentage of red cells, 69.7 to 87.8%). Manifestations of sickle cell disease decreased during the follow-up period. CONCLUSIONS: CRISPR-Cas9 disruption of the HBG1 and HBG2 gene promoters was an effective strategy for induction of fetal hemoglobin. Infusion of autologous OTQ923 into three participants with severe sickle cell disease resulted in sustained induction of red-cell fetal hemoglobin and clinical improvement in disease severity. (Funded by Novartis Pharmaceuticals; ClinicalTrials.gov number, NCT04443907.).
Assuntos
Anemia Falciforme , Sistemas CRISPR-Cas , Eritrócitos , Hemoglobina Fetal , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Antígenos CD34 , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme , Regiões Promotoras GenéticasRESUMO
This phase 1 postapproval study assessed the effect of the mitogen-activated protein kinase kinase enzyme 1/enzyme 2 inhibitor trametinib (2 mg once daily, repeat dosing) on the pharmacokinetics of combined oral contraceptives (COCs) containing norethindrone (NE; 1 mg daily) and ethinyl estradiol (EE; 0.035 mg daily) in 19 female patients with solid tumors. Compared with NE/EE administered without trametinib, NE/EE administered with steady-state trametinib was associated with a clinically nonrelevant 20% increase in NE exposure (area under the curve [AUC]) and no effect on EE exposure (geometric mean ratio [geo-mean] of NE/EE + trametinib to NE/EE [90%CI]: NE AUC calculated to the end of a dosing interval at steady-state [AUCtau ] 1.20 [1.02-1.41]; NE AUC from time zero to the last measurable concentration sampling time [AUClast ] 1.2 [0.999-1.45]; EE AUCtau 1.06 [0.923-1.22]; EE AUClast 1.05 [0.883-1.25]). Maximum serum concentration (Cmax ) of NE increased by 13% and Cmax of EE decreased by 8.5% when dosed with steady-state trametinib compared with COCs administered alone (geo-mean ratio [90%CI]: NE Cmax 1.13 [0.933-1.36]; EE Cmax 0.915 [0.803-1.04]). These results indicate that repeat-dose trametinib does not lower exposure to NE or EE and, hence, is unlikely to impact the contraceptive efficacy of COCs. The pharmacokinetic parameters of trametinib and its metabolite M5 were consistent with historic data of trametinib alone. Coadministration of trametinib and COCs was generally well tolerated in this study, with observed safety signals consistent with the known safety profile of trametinib and no new reported safety events. Overall, the findings indicate that hormonal COCs can be coadministered in female patients who receive trametinib monotherapy without compromising the contraceptive efficacy.
Assuntos
Neoplasias , Noretindrona , Anticoncepcionais Orais Combinados/efeitos adversos , Etinilestradiol/efeitos adversos , Feminino , Humanos , Masculino , Neoplasias/tratamento farmacológico , Piridonas , PirimidinonasRESUMO
BACKGROUND AND OBJECTIVES: Dipeptidyl peptidase-4 (DPP4) inhibition is a potential strategy to increase the engraftment rate of haematopoietic stem/progenitor cells. A recent clinical trial using sitagliptin, a DPP4 inhibitor approved for type 2 diabetes mellitus, has been shown to be a promising approach in adults with haematological malignancies after umbilical cord blood (UCB) haematopoietic cell transplantation (HCT). On the basis of data from this clinical trial, a semi-mechanistic model was developed to simultaneously describe DPP4 activity after multiple doses of sitagliptin in subjects with haematological malignancies after a single-unit UCB HCT. METHODS: The clinical study included 24 patients who received myeloablative conditioning followed by oral sitagliptin with single-unit UCB HCT. Using a nonlinear mixed-effects approach, a semi-mechanistic pharmacokinetic-pharmacodynamic model was developed to describe DPP4 activity from these trial data, using NONMEM version 7.2 software. The model was used to drive Monte Carlo simulations to probe the various dosage schedules and the attendant DPP4 response. RESULTS: The disposition of sitagliptin in plasma was best described by a two-compartment model. The relationship between sitagliptin concentrations and DPP4 activity was best described by an indirect response model with a negative feedback loop. Simulations showed that twice daily or three times daily dosage schedules were superior to a once daily schedule for maximal DPP4 inhibition at the lowest sitagliptin exposure. CONCLUSION: This study provides the first pharmacokinetic-pharmacodynamic model of sitagliptin in the context of HCT, and provides a valuable tool for exploration of optimal dosing regimens, which are critical for improving the time to engraftment in patients after UCB HCT.
Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/terapia , Pirazinas/farmacologia , Triazóis/farmacologia , Área Sob a Curva , Relação Dose-Resposta a Droga , Neoplasias Hematológicas/sangue , Humanos , População , Fosfato de SitagliptinaRESUMO
BACKGROUND AND OBJECTIVE: Tacrolimus is an immunosuppressive drug used for the prevention of the allograft rejection in kidney transplant recipients. It exhibits a narrow therapeutic index and large pharmacokinetic variability. Tacrolimus is mainly metabolized by cytochrome P450 (CYP) 3A4 and 3A5 and effluxed via ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), encoded by ABCB1 gene. The influence of CYP3A5*3 on the pharmacokinetics of tacrolimus has been well characterized. On the other hand, the contribution of polymorphisms in other genes is controversial. In addition, the involvement of other efflux transporters than P-gp in tacrolimus disposition is uncertain. The present study was designed to investigate the effects of genetic polymorphisms of CYP3As and efflux transporters on the pharmacokinetics of tacrolimus. SUBJECTS AND METHODS: A total of 500 blood concentrations of tacrolimus from 102 adult stable kidney transplant recipients were included in the analyses. Genetic polymorphisms in CYP3A4 and CYP3A5 genes were determined. In addition, the genes of efflux transporters including P-gp (ABCB1), multidrug resistance-associated protein (MRP2/ABCC2) and breast cancer resistance protein (BCRP/ABCG2) were genotyped. For ABCC2 gene, haplotypes were determined as follows: H1 (wild type), H2 (1249G>A), H9 (3972C>T) and H12 (-24C>T and 3972C>T). Population pharmacokinetic analysis was performed using nonlinear mixed effects modeling. RESULTS: Analyses revealed that the CYP3A5 expressers (CYP3A5*1 carriers) and MRP2 high-activity group (ABCC2 H2/H2 and H1/H2) showed a decreased dose-normalized trough concentration of tacrolimus by 2.3-fold (p < 0.001) and 1.5-fold (p = 0.007), respectively. The pharmacokinetics of tacrolimus were best described using a two-compartment model with first order absorption and an absorption lag time. In the population pharmacokinetic analysis, CYP3A5 expressers and MRP2 high-activity groups were identified as the significant covariates for tacrolimus apparent clearance expressed as 20.7 × (age/50)(-0.78) × 2.03 (CYP3A5 expressers) × 1.40 (MRP2 high-activity group). No other CYP3A4, ABCB1 or ABCG2 polymorphisms were associated with the apparent clearance of tacrolimus. CONCLUSIONS: This is the first report showing that MRP2/ABCC2 has a crucial impact on the pharmacokinetics of tacrolimus in a haplotype-specific manner. Determination of the ABCC2 as well as CYP3A5 genotype may be useful for more accurate tacrolimus dosage adjustment.