Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(4): 2201-2210, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35150260

RESUMO

In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.


Assuntos
Escherichia coli , Recombinases Rec A , Adenosina Trifosfatases/genética , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
2.
Nucleic Acids Res ; 48(1): 212-230, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31665437

RESUMO

When replication forks encounter template DNA lesions, the lesion is simply skipped in some cases. The resulting lesion-containing gap must be converted to duplex DNA to permit repair. Some gap filling occurs via template switching, a process that generates recombination-like branched DNA intermediates. The Escherichia coli Uup and RadD proteins function in different pathways to process the branched intermediates. Uup is a UvrA-like ABC family ATPase. RadD is a RecQ-like SF2 family ATPase. Loss of both functions uncovers frequent and RecA-independent deletion events in a plasmid-based assay. Elevated levels of crossing over and repeat expansions accompany these deletion events, indicating that many, if not most, of these events are associated with template switching in postreplication gaps as opposed to simple replication slippage. The deletion data underpin simulations indicating that multiple postreplication gaps may be generated per replication cycle. Both Uup and RadD bind to branched DNAs in vitro. RadD protein suppresses crossovers and Uup prevents nucleoid mis-segregation. Loss of Uup and RadD function increases sensitivity to ciprofloxacin. We present Uup and RadD as genomic guardians. These proteins govern two pathways for resolution of branched DNA intermediates such that potentially deleterious genome rearrangements arising from frequent template switching are averted.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Replicação do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/deficiência , Adenosina Trifosfatases/deficiência , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Genoma Bacteriano , Plasmídeos/química , Plasmídeos/metabolismo , Origem de Replicação , Deleção de Sequência
3.
Nucleic Acids Res ; 43(8): 4133-49, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25824953

RESUMO

The UvrD helicase has been implicated in the disassembly of RecA nucleoprotein filaments in vivo and in vitro. We demonstrate that UvrD utilizes an active mechanism to remove RecA from the DNA. Efficient RecA removal depends on the availability of DNA binding sites for UvrD and/or the accessibility of the RecA filament ends. The removal of RecA from DNA also requires ATP hydrolysis by the UvrD helicase but not by RecA protein. The RecA-removal activity of UvrD is slowed by RecA variants with enhanced DNA-binding properties. The ATPase rate of UvrD during RecA removal is much slower than the ATPase activity of UvrD when it is functioning either as a translocase or a helicase on DNA in the absence of RecA. Thus, in this context UvrD may operate in a specialized disassembly mode.


Assuntos
DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Recombinases Rec A/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinases Rec A/antagonistas & inibidores , Recombinases Rec A/química , Recombinases Rec A/ultraestrutura , Deleção de Sequência
4.
DNA Repair (Amst) ; 26: 30-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25559557

RESUMO

Among strains of Escherichia coli that have evolved to survive extreme exposure to ionizing radiation, mutations in the recA gene are prominent and contribute substantially to the acquired phenotype. Changes at amino acid residue 276, D276A and D276N, occur repeatedly and in separate evolved populations. RecA D276A and RecA D276N exhibit unique adaptations to an environment that can require the repair of hundreds of double strand breaks. These two RecA protein variants (a) exhibit a faster rate of filament nucleation on DNA, as well as a slower extension under at least some conditions, leading potentially to a distribution of the protein among a higher number of shorter filaments, (b) promote DNA strand exchange more efficiently in the context of a shorter filament, and (c) are markedly less inhibited by ADP. These adaptations potentially allow RecA protein to address larger numbers of double strand DNA breaks in an environment where ADP concentrations are higher due to a compromised cellular metabolism.


Assuntos
Proteínas de Escherichia coli/genética , Mutação , Tolerância a Radiação/genética , Recombinases Rec A/genética , Reparo de DNA por Recombinação/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Radiação Ionizante , Recombinases Rec A/antagonistas & inibidores , Recombinases Rec A/metabolismo , Reparo de DNA por Recombinação/fisiologia
5.
J Biol Chem ; 288(29): 21351-21366, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23729671

RESUMO

The RecA protein of Deinococcus radiodurans (DrRecA) has a central role in genome reconstitution after exposure to extreme levels of ionizing radiation. When bound to DNA, filaments of DrRecA protein exhibit active and inactive states that are readily interconverted in response to several sets of stimuli and conditions. At 30 °C, the optimal growth temperature, and at physiological pH 7.5, DrRecA protein binds to double-stranded DNA (dsDNA) and forms extended helical filaments in the presence of ATP. However, the ATP is not hydrolyzed. ATP hydrolysis of the DrRecA-dsDNA filament is activated by addition of single-stranded DNA, with or without the single-stranded DNA-binding protein. The ATPase function of DrRecA nucleoprotein filaments thus exists in an inactive default state under some conditions. ATPase activity is thus not a reliable indicator of DNA binding for all bacterial RecA proteins. Activation is effected by situations in which the DNA substrates needed to initiate recombinational DNA repair are present. The inactive state can also be activated by decreasing the pH (protonation of multiple ionizable groups is required) or by addition of volume exclusion agents. Single-stranded DNA-binding protein plays a much more central role in DNA pairing and strand exchange catalyzed by DrRecA than is the case for the cognate proteins in Escherichia coli. The data suggest a mechanism to enhance the efficiency of recombinational DNA repair in the context of severe genomic degradation in D. radiodurans.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/metabolismo , Nucleoproteínas/metabolismo , Recombinases Rec A/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Biológicos , Ligação Proteica , Estrutura Secundária de Proteína , Recombinases Rec A/antagonistas & inibidores , Temperatura , Fatores de Tempo
6.
J Biol Chem ; 286(10): 7830-7840, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21193798

RESUMO

Using an ensemble approach, we demonstrate that an oligomeric RecA species is required for the extension phase of RecA filament formation. The RecA K72R mutant protein can bind but not hydrolyze ATP or dATP. When mixed with other RecA variants, RecA K72R causes a drop in the rate of ATP hydrolysis and has been used to study disassembly of hydrolysis-proficient RecA protein filaments. RecA K72R filaments do not form in the presence of ATP but do so when dATP is provided. We demonstrate that in the presence of ATP, RecA K72R is defective for extension of RecA filaments on DNA. This defect is partially rescued when the mutant protein is mixed with sufficient levels of wild type RecA protein. Functional extension complexes form most readily when wild type RecA is in excess of RecA K72R. Thus, RecA K72R inhibits hydrolysis-proficient RecA proteins by interacting with them in solution and preventing the extension phase of filament assembly.


Assuntos
Trifosfato de Adenosina/química , DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Mutação de Sentido Incorreto , Multimerização Proteica , Recombinases Rec A/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
7.
J Biol Chem ; 285(5): 3211-26, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19910465

RESUMO

Disassembly of RecA protein subunits from a RecA filament has long been known to occur during DNA strand exchange, although its importance to this process has been controversial. An Escherichia coli RecA E38K/DeltaC17 double mutant protein displays a unique and pH-dependent mutational separation of DNA pairing and extended DNA strand exchange. Single strand DNA-dependent ATP hydrolysis is catalyzed by this mutant protein nearly normally from pH 6 to 8.5. It will also form filaments on DNA and promote DNA pairing. However, below pH 7.3, ATP hydrolysis is completely uncoupled from extended DNA strand exchange. The products of extended DNA strand exchange do not form. At the lower pH values, disassembly of RecA E38K/DeltaC17 filaments is strongly suppressed, even when homologous DNAs are paired and available for extended DNA strand exchange. Disassembly of RecA E38K/DeltaC17 filaments improves at pH 8.5, whereas complete DNA strand exchange is also restored. Under these sets of conditions, a tight correlation between filament disassembly and completion of DNA strand exchange is observed. This correlation provides evidence that RecA filament disassembly plays a major role in, and may be required for, DNA strand exchange. A requirement for RecA filament disassembly in DNA strand exchange has a variety of ramifications for the current models linking ATP hydrolysis to DNA strand exchange.


Assuntos
DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Escherichia coli/metabolismo , Nucleoproteínas/química , Recombinases Rec A/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Microscopia Eletrônica/métodos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
8.
Mol Cell ; 36(1): 121-30, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19818715

RESUMO

The process of bacterial conjugation involves the transfer of a conjugative plasmid as a single strand. The potentially deleterious SOS response, which is normally triggered by the appearance of single-stranded DNA, is suppressed in the recipient cell by a conjugative plasmid system centered on the product of the psiB gene. The F plasmid PsiB protein inhibits all activities of the RecA protein, including DNA binding, DNA strand exchange, and LexA protein cleavage. The proteins known to negatively regulate recombinases, such as RecA or Rad51, generally work at the level of dismantling the nucleoprotein filament. However, PsiB binds to RecA protein that is free in solution. The RecA-PsiB complex impedes formation of RecA nucleoprotein filaments on DNA.


Assuntos
Proteínas de Bactérias/metabolismo , Recombinases Rec A/metabolismo , Resposta SOS em Genética/fisiologia , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Conjugação Genética/fisiologia , Troca Genética/genética , DNA/genética , DNA/metabolismo , DNA Circular/genética , DNA Circular/metabolismo , DNA Circular/ultraestrutura , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Polarização de Fluorescência , Modelos Genéticos , Poli T/metabolismo , Ligação Proteica/fisiologia , Recombinases Rec A/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/metabolismo
9.
J Biol Chem ; 284(32): 21402-11, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19515845

RESUMO

Deinococcus radiodurans exhibits an extraordinary resistance to the effects of exposure to ionizing radiation (IR). DdrB is one of five proteins induced to high levels in Deinococcus following extreme IR exposure and that play a demonstrable role in genome reconstitution. Although homology is limited, DdrB is a bacterial single-stranded DNA-binding protein. DdrB features a stable core with a putative OB-fold, and a C-terminal segment with properties consistent with other bacterial SSBs. In solution, the protein functions as a pentamer. The protein binds single-stranded DNA but not duplex DNA. Electron microscopy and assays with two RecA proteins provide further structural and functional identification with bacterial SSB. Overall, the results establish DdrB as the prototype of a new bacterial SSB family. Given the role of SSB as a mobilization scaffold for many processes in DNA metabolism, the induction of an alternative and quite novel SSB following irradiation has potentially broad significance for the organization of genome reconstitution functions.


Assuntos
Proteínas de Bactérias/fisiologia , Deinococcus/metabolismo , Regulação Bacteriana da Expressão Gênica , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , DNA/química , DNA de Cadeia Simples/química , Microscopia Eletrônica/métodos , Dados de Sequência Molecular , Peso Molecular , Oligonucleotídeos/química , Ligação Proteica , Radiação Ionizante , Recombinases Rec A/química , Homologia de Sequência de Aminoácidos
10.
J Biol Chem ; 283(36): 24909-21, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18603529

RESUMO

The RecA and some related proteins possess a simple motif, called (KR)X(KR), that (in RecA) consists of two lysine residues at positions 248 and 250 at the subunit-subunit interface. This study and previous work implicate this RecA motif in the following: (a) catalyzing ATP hydrolysis in trans,(b) coordinating the ATP hydrolytic cycles of adjacent subunits, (c) governing the rate of ATP hydrolysis, and (d) coupling the ATP hydrolysis to work (in this case DNA strand exchange). The conservative K250R mutation leaves RecA nucleoprotein filament formation largely intact. However, ATP hydrolysis is slowed to less than 15% of the wild-type rate. DNA strand exchange is also slowed commensurate with the rate of ATP hydrolysis. The results reinforce the idea of a tight coupling between ATP hydrolysis and DNA strand exchange. When a plasmid-borne RecA K250R protein is expressed in a cell otherwise lacking RecA protein, the growth of the cells is severely curtailed. The slow growth defect is alleviated in cells lacking RecFOR function, suggesting that the defect reflects loading of RecA at stalled replication forks. Suppressors occur as recA gene alterations, and their properties indicate that limited dissociation by RecA K250R confers the slow growth phenotype. Overall, the results suggest that recombinational DNA repair is a common occurrence in cells. RecA protein plays a sufficiently intimate role in the bacterial cell cycle that its properties can limit the growth rate of a bacterial culture.


Assuntos
Substituição de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Mutação de Sentido Incorreto , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos/genética , Domínio Catalítico/genética , Ciclo Celular/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hidrólise , Recombinases Rec A/genética
11.
Mol Microbiol ; 69(5): 1165-79, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18627467

RESUMO

The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R (recA2201) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo. We have combined the K72R variant of RecA with another mutation, RecA E38K (recA730). In vitro, the double mutant RecA E38K/K72R (recA730,2201) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/química , Escherichia coli/enzimologia , Recombinases Rec A/química , Resposta SOS em Genética , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinases Rec A/ultraestrutura , Resposta SOS em Genética/efeitos da radiação , Serina Endopeptidases/metabolismo , Raios Ultravioleta
12.
J Biol Chem ; 281(18): 12968-75, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16527806

RESUMO

The RecA residues Lys248 and Glu96 are closely opposed across the RecA subunit-subunit interface in some recent models of the RecA nucleoprotein filament. The K248R and E96D single mutant proteins of the Escherichia coli RecA protein each bind to DNA and form nucleoprotein filaments but do not hydrolyze ATP or dATP. A mixture of K248R and E96D single mutant proteins restores dATP hydrolysis to 25% of the wild type rate, with maximum restoration seen when the proteins are present in a 1:1 ratio. The K248R/E96D double mutant RecA protein also hydrolyzes ATP and dATP at rates up to 10-fold higher than either single mutant, although at a reduced rate compared with the wild type protein. Thus, the K248R mutation partially complements the inactive E96D mutation and vice versa. The complementation is not sufficient to allow DNA strand exchange. The K248R and E96D mutations originate from opposite sides of the subunit-subunit interface. The functional complementation suggests that Lys248 plays a significant role in ATP hydrolysis in trans across the subunit-subunit interface in the RecA nucleoprotein filament. This could be part of a mechanism for the long range coordination of hydrolytic cycles between subunits within the RecA filament.


Assuntos
Trifosfato de Adenosina/química , Teste de Complementação Genética , Mutação Puntual , Recombinases Rec A/genética , Difosfato de Adenosina/química , Catálise , DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Lisina/química , Microscopia Eletrônica , Conformação Molecular , Mutação , Recombinases Rec A/metabolismo
13.
J Biol Chem ; 281(8): 4708-17, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16377615

RESUMO

The Escherichia coli RdgC protein is a potential negative regulator of RecA function. RdgC inhibits RecA protein-promoted DNA strand exchange, ATPase activity, and RecA-dependent LexA cleavage. The primary mechanism of RdgC inhibition appears to involve a simple competition for DNA binding sites, especially on duplex DNA. The capacity of RecA to compete with RdgC is improved by the DinI protein. RdgC protein can inhibit DNA strand exchange catalyzed by RecA nucleoprotein filaments formed on single-stranded DNA by binding to the homologous duplex DNA and thereby blocking access to that DNA by the RecA nucleoprotein filaments. RdgC protein binds to single-stranded and double-stranded DNA, and the protein can be visualized on DNA using electron microscopy. RdgC protein exists in solution as a mixture of oligomeric states in equilibrium, most likely as monomers, dimers, and tetramers. This concentration-dependent change of state appears to affect its mode of binding to DNA and its capacity to inhibit RecA. The various species differ in their capacity to inhibit RecA function.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Recombinases Rec A/metabolismo , Adenosina Trifosfatases/química , Anisotropia , Proteínas de Bactérias/química , Bacteriófagos/metabolismo , Sítios de Ligação , Ligação Competitiva , Clonagem Molecular , DNA/química , DNA de Cadeia Simples/química , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Deleção de Genes , Hidrólise , Microscopia Eletrônica , Ligação Proteica , Recombinases Rec A/química , Recombinação Genética , Serina Endopeptidases/química , Espectrofotometria , Temperatura , Fatores de Tempo
14.
Mol Cell ; 15(5): 789-98, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15350222

RESUMO

The RecX protein is a potent inhibitor of RecA protein activities. RecX functions by specifically blocking the extension of RecA filaments. In vitro, this leads to a net disassembly of RecA protein from circular single-stranded DNA. Based on multiple observations, we propose that RecX has a RecA filament capping activity. This activity has predictable effects on the formation and disassembly of RecA filaments. In vivo, the RecX protein may limit the length of RecA filaments formed during recombinational DNA repair and other activities. RecX protein interacts directly with RecA protein, but appears to interact in a functionally significant manner only with RecA filaments bound to DNA.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação/genética , DNA Helicases/genética , DNA Helicases/ultraestrutura , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Microscopia Eletrônica , Ligação Proteica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA