Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30908207

RESUMO

This paper describes the development of a miniaturized 15-MHz side-looking phased-array transducer catheter. The array features a 2-2 linear composite with 64 piezoelectric elements mechanically diced into a piece of PMN-30%PT single crystal and separated by non-conductive epoxy kerfs at a 50-µm pitch, yielding a total active aperture of 3.2 mm in the azimuth direction and 1.8 mm in the elevation direction, with an elevation natural focal depth of 8.1 mm. The array includes non-conductive epoxy backing and two front matching layers. A custom flexible circuit connects the array piezoelectric elements to a bundle of 64 individual 48-AWG micro-coaxial cables enclosed within a 1.5-m long 10F catheter. Performance characterization was evaluated via finite element analysis simulations and afterwards compared against obtained measurement results, which showed an average center frequency of 17.7 MHz, an average bandwidth of 52.2% at -6 dB, and crosstalk less than -30 dB. Imaging of a tungsten fine-wire phantom resulted in axial and lateral spatial resolutions of approximately 90 µm and 420 ìm, respectively. The imaging capability was further evaluated with colorectal tissue-mimicking phantoms, demonstrating the potential suitability of the proposed phased-array transducer for the intraoperative assessment of surgical margins during minimally invasive colorectal surgery procedures.

2.
Ultrasound Med Biol ; 44(3): 622-634, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29284555

RESUMO

Manipulation of cellular functions and structures by introduction of genetic materials inside cells has been one of the most prominent research areas in biomedicine. High-frequency ultrasound acoustic-transfection has recently been developed and confirmed by intracellular delivery of small molecules into HeLa cells at the single-cell level with high cell viability. After we proved the concept underlying the acoustic-transfection technique, treatment conditions for different human cancer cell lines have been intensively investigated to further develop acoustic-transfection as a versatile and adaptable transfection method by satisfying the requirements of high-delivery efficiency and cell membrane permeability with minimal membrane disruption. To determine optimal treatment conditions for different cell lines, we developed a quantitative intracellular delivery score based on delivery efficiency, cell membrane permeability and cell viability after 4 and 20 h of treatment. The intracellular delivery of macromolecules and the simultaneous intracellular delivery of two molecules under optimal treatment conditions were successfully achieved. We found that DNA plasmid was delivered by acoustic-transfection technique into epiblast stem cells, which expressed transient mCherry fluorescence.


Assuntos
Permeabilidade da Membrana Celular , Substâncias Macromoleculares/metabolismo , Transfecção/métodos , Ultrassom , Acústica , Sobrevivência Celular , Humanos , Fatores de Tempo , Células Tumorais Cultivadas/metabolismo
3.
Quant Imaging Med Surg ; 5(1): 108-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25694960

RESUMO

BACKGROUND: Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. METHODS: The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. RESULTS: The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. CONCLUSIONS: All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA