Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(49): eabl8213, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851659

RESUMO

Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.

2.
Commun Biol ; 3(1): 482, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879423

RESUMO

In higher plants, chloroplast ATP synthase has a unique redox switch on its γ subunit that modulates enzyme activity to limit ATP hydrolysis at night. To understand the molecular details of the redox modulation, we used single-particle cryo-EM to determine the structures of spinach chloroplast ATP synthase in both reduced and oxidized states. The disulfide linkage of the oxidized γ subunit introduces a torsional constraint to stabilize the two ß hairpin structures. Once reduced, free cysteines alleviate this constraint, resulting in a concerted motion of the enzyme complex and a smooth transition between rotary states to facilitate the ATP synthesis. We added an uncompetitive inhibitor, tentoxin, in the reduced sample to limit the flexibility of the enzyme and obtained high-resolution details. Our cryo-EM structures provide mechanistic insight into the redox modulation of the energy regulation activity of chloroplast ATP synthase.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/química , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Spinacia oleracea/enzimologia , Biocatálise , ATPases de Cloroplastos Translocadoras de Prótons/ultraestrutura , Microscopia Crioeletrônica , Luz , Modelos Biológicos , Modelos Moleculares , Nucleotídeos/metabolismo , Oxirredução , Domínios Proteicos , Subunidades Proteicas/química , Estatística como Assunto , Relação Estrutura-Atividade
3.
J Mater Chem B ; 8(37): 8558-8572, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32830211

RESUMO

Simultaneous delivery of small molecules and nucleic acids using a single vehicle can lead to novel combination treatments and multifunctional carriers for a variety of diseases. In this study, we report a novel library of aminoglycoside-derived lipopolymers nanoparticles (LPNs) for the simultaneous delivery of different molecular cargoes including nucleic acids and small-molecules. The LPN library was screened for transgene expression efficacy following delivery of plasmid DNA, and lead LPNs that showed high transgene expression efficacies were characterized using hydrodynamic size, zeta potential, 1H NMR and FT-IR spectroscopy, and transmission electron microscopy. LPNs demonstrated significantly higher efficacies for transgene expression than 25 kDa polyethyleneamine (PEI) and lipofectamine, including in presence of serum. Self-assembly of these cationic lipopolymers into nanoparticles also facilitated the delivery of small molecule drugs (e.g. doxorubicin) to cancer cells. LPNs were also employed for the simultaneous delivery of the small-molecule histone deacetylase (HDAC) inhibitor AR-42 together with plasmid DNA to cancer cells as a combination treatment approach for enhancing transgene expression. Taken together, our results indicate that aminoglycoside-derived LPNs are attractive vehicles for simultaneous delivery of imaging agents or chemotherapeutic drugs together with nucleic acids for different applications in medicine and biotechnology.


Assuntos
Antineoplásicos/farmacologia , DNA/farmacologia , Portadores de Fármacos/química , Inibidores de Histona Desacetilases/farmacologia , Nanopartículas/química , Polímeros/química , Aminoglicosídeos/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , DNA/genética , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Técnicas de Transferência de Genes , Glicolipídeos/química , Proteínas de Fluorescência Verde/genética , Inibidores de Histona Desacetilases/química , Humanos , Camundongos , Fenilbutiratos/farmacologia , Plasmídeos/genética , Plasmídeos/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética
4.
Nat Commun ; 5: 3106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24469021

RESUMO

Cyclic nucleotide-modulated ion channels are important for signal transduction and pacemaking in eukaryotes. The molecular determinants of ligand gating in these channels are still unknown, mainly because of a lack of direct structural information. Here we report ligand-induced conformational changes in full-length MloK1, a cyclic nucleotide-modulated potassium channel from the bacterium Mesorhizobium loti, analysed by electron crystallography and atomic force microscopy. Upon cAMP binding, the cyclic nucleotide-binding domains move vertically towards the membrane, and directly contact the S1-S4 voltage sensor domains. This is accompanied by a significant shift and tilt of the voltage sensor domain helices. In both states, the inner pore-lining helices are in an 'open' conformation. We propose a mechanism in which ligand binding can favour pore opening via a direct interaction between the cyclic nucleotide-binding domains and voltage sensors. This offers a simple mechanistic hypothesis for the coupling between ligand gating and voltage sensing in eukaryotic HCN channels.


Assuntos
Proteínas de Bactérias/química , Mesorhizobium/metabolismo , Canais de Potássio/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , AMP Cíclico/metabolismo , Ativação do Canal Iônico , Ligantes , Microscopia de Força Atômica , Modelos Moleculares , Canais de Potássio/metabolismo
5.
Structure ; 15(9): 1053-64, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17850745

RESUMO

The gating ring of cyclic nucleotide-modulated channels is proposed to be either a two-fold symmetric dimer of dimers or a four-fold symmetric tetramer based on high-resolution structure data of soluble cyclic nucleotide-binding domains and functional data on intact channels. We addressed this controversy by obtaining structural data on an intact, full-length, cyclic nucleotide-modulated potassium channel, MloK1, from Mesorhizobium loti, which also features a putative voltage-sensor. We present here the 3D single-particle structure by transmission electron microscopy and the projection map of membrane-reconstituted 2D crystals of MloK1 in the presence of cAMP. Our data show a four-fold symmetric arrangement of the CNBDs, separated by discrete gaps. A homology model for full-length MloK1 suggests a vertical orientation for the CNBDs. The 2D crystal packing in the membrane-embedded state is compatible with the S1-S4 domains in the vertical "up" state.


Assuntos
AMP Cíclico/metabolismo , Canais de Potássio/química , Rhizobium/química , Sequência de Aminoácidos , Cristalografia , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA