Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(4): 520-531, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38324336

RESUMO

Relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL) and lymphomas have poor patient outcomes; novel therapies are needed. CD22 is an attractive target for antibody-drug conjugates (ADCs), being highly expressed in R/R B-ALL with rapid internalization kinetics. ADCT-602 is a novel CD22-targeting ADC, consisting of humanized mAb hLL2-C220, site specifically conjugated to the pyrrolobenzodiazepine dimer-based payload tesirine. In preclinical studies, ADCT-602 demonstrated potent, specific cytotoxicity in CD22-positive lymphomas and leukemias. ADCT-602 was specifically bound, internalized, and trafficked to lysosomes in CD22-positive tumor cells; after cytotoxin release, DNA interstrand crosslink formation persisted for 48 hours. In the presence of CD22-positive tumor cells, ADCT-602 caused bystander killing of CD22-negative tumor cells. A single ADCT-602 dose led to potent, dose-dependent, in vivo antitumor activity in subcutaneous and disseminated human lymphoma/leukemia models. Pharmacokinetic analyses (rat and cynomolgus monkey) showed excellent stability and tolerability of ADCT-602. Cynomolgus monkey B cells were efficiently depleted from circulation after one dose. Gene signature association analysis revealed IRAK1 as a potential marker for ADCT-602 resistance. Combining ADCT-602 + pacritinib was beneficial in ADCT-602-resistant cells. Chidamide increased CD22 expression on B-cell tumor surfaces, increasing ADCT-602 activity. These data support clinical testing of ADCT-602 in R/R B-ALL (NCT03698552) and CD22-positive hematologic cancers.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Imunoconjugados , Linfoma de Células B , Humanos , Ratos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Macaca fascicularis , Antineoplásicos/uso terapêutico , Linfoma de Células B/tratamento farmacológico , Neoplasias Hematológicas/tratamento farmacológico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
2.
Mol Cancer Ther ; 21(4): 582-593, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086955

RESUMO

AXL, a tyrosine kinase receptor that is overexpressed in many solid and hematologic malignancies, facilitates cancer progression and is associated with poor clinical outcomes. Importantly, drug-induced expression of AXL results in resistance to conventional chemotherapy and targeted therapies. Together with its presence on multiple cell types in the tumor immune microenvironment, these features make it an attractive therapeutic target for AXL-expressing malignancies. ADCT-601 (mipasetamab uzoptirine) is an AXL-targeted antibody-drug conjugate (ADC) comprising a humanized anti-AXL antibody site specifically conjugated using GlycoConnect technology to PL1601, which contains HydraSpace, a Val-Ala cleavable linker and the potent pyrrolobenzodiazepine (PBD) dimer cytotoxin SG3199. This study aimed to validate the ADCT-601 mode of action and evaluate its efficacy in vitro and in vivo, as well as its tolerability and pharmacokinetics. ADCT-601 bound to both soluble and membranous AXL, and was rapidly internalized by AXL-expressing tumor cells, allowing release of PBD dimer, DNA interstrand cross-linking, and subsequent cell killing. In vivo, ADCT-601 had potent and durable antitumor activity in a wide variety of human cancer xenograft mouse models, including patient-derived xenograft models with heterogeneous AXL expression where ADCT-601 antitumor activity was markedly superior to an auristatin-based comparator ADC. Notably, ADCT-601 had antitumor activity in a monomethyl auristatin E-resistant lung-cancer model and synergized with the PARP inhibitor olaparib in a BRCA1-mutated ovarian cancer model. ADCT-601 was well tolerated at doses of up to 6 mg/kg and showed excellent stability in vivo. These preclinical results warrant further evaluation of ADCT-601 in the clinic.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzodiazepinas/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pirróis , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32912922

RESUMO

BACKGROUND: Regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. They play an important role in the establishment and progression of tumors with high Tregs infiltration and present a major obstacle to tumor eradication by immunotherapies. Numerous strategies have been attempted to deplete or block Tregs, although their success has been limited. METHODS: A CD25-targeted, pyrrolobenzodiazepine (PBD) dimer-based antibody-drug conjugate (ADC) was investigated for its ability to deplete Tregs and induce antitumor immunity. Antitumor activity of CD25-ADC either alone or in combination with an anti-programmed cell death protein 1 (PD-1) antibody was evaluated in CD25-negative syngeneic models that exhibit tumor infiltration of CD25-expressing Tregs, and its pharmacodynamics and pharmacokinetics were assessed. RESULTS: Single low doses of CD25-ADC resulted in potent and durable antitumor activity in established syngeneic solid tumor models and the combination of a suboptimal dose was synergistic with PD-1 blockade. Tumor eradication by the CD25-targeted ADC was CD8+ T cell-dependent and CD25-ADC induced protective immunity. Importantly, while CD25-ADC mediated a significant and sustained intratumoral Tregs depletion, accompanied by a concomitant increase in the number of activated and proliferating tumor-infiltrating CD8+ T effector cells, systemic Tregs depletion was transient, alleviating concerns of potential autoimmune side effects. CONCLUSIONS: This study shows that a PBD dimer-based, CD25-targeted ADC is able to deplete Tregs and eradicate established tumors via antitumor immunity. This represents a novel approach to efficiently deplete Tregs via a very potent DNA damaging toxin known to induce immunogenic cell death. Moreover, this study provides proof of concept for a completely new application of ADCs as immunotherapeutic agents, as the main mode of action relies on the ADC directly targeting immune cells, rather than tumor cells. These strong preclinical data warrant the clinical evaluation of camidanlumab tesirine (ADCT-301), a PBD-based ADC targeting human CD25, either alone or in combination with checkpoint inhibitors in solid tumors with known Tregs infiltration. A phase I trial (NCT03621982) of camidanlumab tesirine in patients with selected advanced solid tumors is ongoing.


Assuntos
Imunoconjugados/uso terapêutico , Imunoterapia/métodos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Neoplasias/genética , Linfócitos T Reguladores/imunologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacologia , Neoplasias/patologia , Microambiente Tumoral
4.
Mol Cancer Ther ; 17(10): 2176-2186, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30065100

RESUMO

Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody-drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine. MEDI3726 specifically binds the extracellular domain of PSMA and, once internalized, releases the PBD dimer to crosslink DNA and trigger cell death. In vitro, MEDI3726 demonstrated potent and specific cytotoxicity in a panel of PSMA-positive prostate cancer cell lines, consistent with internalization and DNA interstrand crosslinking. In vivo, MEDI3726 showed robust antitumor activity against the LNCaP and the castration-resistant CWR22Rv1 prostate cancer cell line xenografts. MEDI3726 also demonstrated durable antitumor activity in the PSMA-positive human prostate cancer patient-derived xenograft (PDX) LuCaP models. This activity correlated with increased phosphorylated Histone H2AX in tumor xenografts treated with MEDI3726. MEDI3726 is being evaluated in a phase I clinical trial as a treatment for patients with metastatic castrate-resistant prostate cancer (NCT02991911). Mol Cancer Ther; 17(10); 2176-86. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Glutamato Carboxipeptidase II/antagonistas & inibidores , Imunoconjugados/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Humanos , Imuno-Histoquímica , Macaca fascicularis , Masculino , Camundongos , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Sci Rep ; 8(1): 10479, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992976

RESUMO

Synthetic pyrrolobenzodiazepine (PBD) dimers, where two PBD monomers are linked through their aromatic A-ring phenolic C8-positions via a flexible propyldioxy tether, are highly efficient DNA minor groove cross-linking agents with potent cytotoxicity. PBD dimer SG3199 is the released warhead component of the antibody-drug conjugate (ADC) payload tesirine (SG3249), currently being evaluated in several ADC clinical trials. SG3199 was potently cytotoxic against a panel of human solid tumour and haematological cancer cell lines with a mean GI50 of 151.5 pM. Cells defective in DNA repair protein ERCC1 or homologous recombination repair showed increased sensitivity to SG3199 and the drug was only moderately susceptible to multidrug resistance mechanisms. SG3199 was highly efficient at producing DNA interstrand cross-links in naked linear plasmid DNA and dose-dependent cross-linking was observed in cells. Cross-links formed rapidly in cells and persisted over 36 hours. Following intravenous (iv) administration to rats SG3199 showed a very rapid clearance with a half life as short as 8 minutes. These combined properties of cytotoxic potency, rapid formation and persistence of DNA interstrand cross-links and very short half-life contribute to the emerging success of SG3199 as a warhead in clinical stage ADCs.


Assuntos
Antineoplásicos/química , Benzodiazepinas/farmacocinética , Imunotoxinas/química , Pirróis/farmacocinética , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Benzodiazepinas/uso terapêutico , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas , DNA/metabolismo , Reparo do DNA , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Pirróis/uso terapêutico , Ratos
6.
Blood ; 131(10): 1094-1105, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29298756

RESUMO

Human CD19 antigen is a 95-kDa type I membrane glycoprotein in the immunoglobulin superfamily whose expression is limited to the various stages of B-cell development and differentiation and is maintained in the majority of B-cell malignancies, including leukemias and non-Hodgkin lymphomas of B-cell origin. Coupled with its differential and favorable expression profile, CD19 has rapid internalization kinetics and is not shed into the circulation, making it an ideal target for the development of antibody-drug conjugates (ADCs) to treat B-cell malignancies. ADCT-402 (loncastuximab tesirine) is a novel CD19-targeted ADC delivering SG3199, a highly cytotoxic DNA minor groove interstrand crosslinking pyrrolobenzodiazepine (PDB) dimer warhead. It showed potent and highly targeted in vitro cytotoxicity in CD19-expressing human cell lines. ADCT-402 was specifically bound, internalized, and trafficked to lysosomes in CD19-expressing cells and, following release of the PBD warhead, resulted in formation of DNA crosslinks that persisted for 36 hours. Bystander killing of CD19- cells by ADCT-402 was also observed. In vivo, single doses of ADCT-402 resulted in highly potent, dose-dependent antitumor activity in several subcutaneous and disseminated human tumor models with marked superiority to comparator ADCs delivering tubulin inhibitors. Dose-dependent DNA crosslinks and γ-H2AX DNA damage response were measured in tumors by 24 hours after single dose administration, whereas matched peripheral blood mononuclear cells showed no evidence of DNA damage. Pharmacokinetic analysis in rat and cynomolgus monkey showed excellent stability and tolerability of ADCT-402 in vivo. Together, these impressive data were used to support the clinical testing of this novel ADC in patients with CD19-expressing B-cell malignancies.


Assuntos
Antígenos CD19/biossíntese , Antineoplásicos , Regulação Leucêmica da Expressão Gênica , Imunoconjugados , Leucemia de Células B , Linfoma não Hodgkin , Proteínas de Neoplasias/biossíntese , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Lisossomos/metabolismo , Lisossomos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA