Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 9(422): ra34, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048565

RESUMO

Altering chromatin structure through histone posttranslational modifications has emerged as a key driver of transcriptional responses in cells. Modulation of these transcriptional responses by pharmacological inhibition of class I histone deacetylases (HDACs), a group of chromatin remodeling enzymes, has been successful in blocking the growth of some cancer cell types. These inhibitors also attenuate the pathogenesis of pathological cardiac remodeling by blunting and even reversing pathological hypertrophy. The mechanistic target of rapamycin (mTOR) is a critical sensor and regulator of cell growth that, as part of mTOR complex 1 (mTORC1), drives changes in protein synthesis and metabolism in both pathological and physiological hypertrophy. We demonstrated through pharmacological and genetic methods that inhibition of class I HDACs suppressed pathological cardiac hypertrophy through inhibition of mTOR activity. Mice genetically silenced for HDAC1 and HDAC2 had a reduced hypertrophic response to thoracic aortic constriction (TAC) and showed reduced mTOR activity. We determined that the abundance of tuberous sclerosis complex 2 (TSC2), an mTOR inhibitor, was increased through a transcriptional mechanism in cardiomyocytes when class I HDACs were inhibited. In neonatal rat cardiomyocytes, loss of TSC2 abolished HDAC-dependent inhibition of mTOR activity, and increased expression of TSC2 was sufficient to reduce hypertrophy in response to phenylephrine. These findings point to mTOR and TSC2-dependent control of mTOR as critical components of the mechanism by which HDAC inhibitors blunt pathological cardiac growth. These results also suggest a strategy to modulate mTOR activity and facilitate the translational exploitation of HDAC inhibitors in heart disease.


Assuntos
Cardiomegalia/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomegalia/genética , Linhagem Celular , Células Cultivadas , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Cíclicos/farmacologia , Interferência de RNA , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
2.
Circulation ; 129(10): 1139-51, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24396039

RESUMO

BACKGROUND: Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. METHODS AND RESULTS: Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects. CONCLUSIONS: The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.


Assuntos
Autofagia/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Coelhos , Ratos , Ratos Sprague-Dawley , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA