Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Chin Med ; 51(5): 1309-1333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37385965

RESUMO

Prostate cancer (PC) is the second leading cause of cancer-related death among men. Treatment of PC becomes difficult after progression because PC that used to be androgen-dependent becomes androgen-independent prostate cancer (AIPC). Veratramine, an alkaloid extracted from the root of the Veratrum genus, has recently been reported to have anticancer effects that work against various cancers; however, its anticancer effects and the underlying mechanism of action in PC remain unknown. We investigated the anticancer effects of veratramine on AIPC using PC3 and DU145 cell lines, as well as a xenograft mouse model. The antitumor effects of veratramine were evaluated using the CCK-8, anchorage-independent colony formation, trans-well, wound healing assays, and flow cytometry in AIPC cell lines. Microarray and proteomics analyses were performed to investigate the differentially expressed genes and proteins induced by veratramine in AIPC cells. A xenograft mouse model was used to confirm the therapeutic response and in vivo efficacy of veratramine. Veratramine dose dependently reduced the proliferation of cancer cells both in vitro and in vivo. Moreover, veratramine treatment effectively suppressed the migration and invasion of PC cells. The immunoblot analysis revealed that veratramine significantly downregulated Cdk4/6 and cyclin D1 via the ATM/ATR and Akt pathways, both of which induce a DNA damage response that eventually leads to G1 phase arrest. In this study, we discovered that veratramine exerted antitumor effects on AIPC cells. We demonstrated that veratramine significantly inhibited the proliferation of cancer cells via G0/G1 phase arrest induced by the ATM/ATR and Akt pathways. These results suggest that veratramine is a promising natural therapeutic agent for AIPC.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Androgênios/farmacologia , Androgênios/uso terapêutico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Ciclo Celular , Linhagem Celular Tumoral , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/farmacologia
2.
Differentiation ; 125: 18-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349880

RESUMO

Mouse embryonic stem cells (mESCs) are characterized by self-renewal and pluripotency and can undergo differentiation into the three germ layers (ectoderm, mesoderm, and endoderm). Melanoma-associated antigen D1 (Maged1), which is expressed in all developing and adult tissues, modulates tissue regeneration and development. In the present study, we examined the expression and function of Maged1 in mESCs. Maged1 protein and mRNA expression increased during mESC differentiation. The pluripotency of mESCs was significantly reduced through extracellular signal-regulated kinase 1/2 phosphorylation upon knockdown of Maged1, and through G1 cell cycle arrest during cell division, resulting in significantly reduced mESC proliferation. Moreover, the diameter of the embryoid bodies was significantly reduced, accompanied by increased levels of ectodermal differentiation markers and decreased levels of mesodermal and endodermal differentiation markers. Maged1-knockdown mESC lines showed significantly reduced teratoma volumes and inhibition of teratoma formation in nude mice. Additionally, we observed increased ectodermal markers but decreased mesodermal and endodermal markers in teratoma tissues. These findings show that Maged1 affects mESC pluripotency, proliferation, cell cycle, and differentiation, thereby contributing to our understanding of the basic molecular biological mechanisms and potential roles of Maged1 as a regulator of various mESC properties.


Assuntos
Células-Tronco Embrionárias Murinas , Animais , Antígenos de Diferenciação/metabolismo , Ciclo Celular/genética , Morte Celular , Diferenciação Celular/genética , Divisão Celular , Camundongos , Camundongos Nus , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia
3.
Life Sci ; 288: 120170, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826438

RESUMO

AIMS: Antitumor effects of veratramine in prostate and liver cancers has been investigated, but it is still unclear whether veratramine can be used as an effective therapeutic agent for glioma. The aim of this study was to evaluate the potential pharmacological mechanism of veratramine in glioma. MAIN METHODS: Using four types of human glioblastoma cell lines, including A172, HS-683, T98G, and U-373-MG the dose-dependent antitumor effect of veratramine was evaluated. The cytotoxicity and cell proliferation were examined by CCK-8, and cell proliferation was further confirmed by anchorage-independent colony formation assay. The cell cycle distribution and apoptotic rate was assessed by flow cytometry, and apoptosis was further evaluated by apoptosis assay. The migration and invasiveness capacity were analyzed by using transwell. Protein and mRNA levels of related factors were determined by western blotting and RT-qPCR, respectively. KEY FINDINGS: Veratramine markedly induced apoptosis, suppressed the cell proliferation via the cell cycle G0/G1 phase arrest, and reduced the capacity for the migration and invasion in human glioblastoma multiforme cell lines. Moreover, veratramine was sufficient to affect the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin signaling pathway and its downstream Mdm2/p53/p21 pathway in human glioblastoma cell lines. SIGNIFICANCE: Antitumor effects of veratramine in suppression of glioma progression was mediated by the regulation of PI3K/Akt/mTOR and Mdm2/p53/p21 signaling pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alcaloides de Veratrum/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
J Cell Biochem ; 123(3): 547-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958137

RESUMO

Mouse embryonic stem cells (mESCs) are a widely used model for their diverse availability in studying early embryonic development and their application in regenerative treatment of various intractable diseases. Transient receptor potential melastatin 7 (Trpm7) regulates Ca2+ as a nonselective ion channel and is essential for early embryonic development; however, the precise role of Trpm7 in mESCs has not been clearly elucidated. In this study, we showed that the inhibition of Trpm7 affects the pluripotency and self-renewal of mESCs. We found that short hairpin RNA (shRNA)-mediated suppression of Trpm7 resulted in decreased expression of transcriptional regulators, Oct4 and Sox2, which maintain stemness in mESCs. In addition, Trpm7 knockdown led to alterations in the basic properties of mESCs, such as decreased proliferation, cell cycle arrest at the G0/G1 phase, and increased apoptosis. Furthermore, embryoid body (EB) formation and teratoma formation assays revealed abnormal regulation of differentiation due to Trpm7 knockdown, including the smaller size of EBs, elevated ectodermal differentiation, and diminished endodermal and mesodermal differentiation. We found that EB Day 7 samples displayed decreased intracellular Ca2+ levels compared to those of the scrambled group. Finally, we identified that these alterations induced by Trpm7 knockdown occurred due to decreased phosphorylation of mechanistic target of rapamycin (mTOR) and subsequent activation of extracellular signal-regulated kinase (ERK) in mESCs. Our findings suggest that Trpm7 could be a novel regulator for maintaining stemness and modulating the differentiation of mESCs.


Assuntos
Células-Tronco Embrionárias Murinas , Canais de Cátion TRPM , Animais , Diferenciação Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , RNA Interferente Pequeno/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
5.
J Exp Clin Cancer Res ; 40(1): 291, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537073

RESUMO

BACKGROUND: The progression of prostate cancer (PC) to the highly aggressive metastatic castration-resistant prostate cancer (mCRPC) or neuroendocrine prostate cancer (NEPC) is a fatal condition and the underlying molecular mechanisms are poorly understood. Here, we identified the novel transcriptional factor ZNF507 as a key mediator in the progression of PC to an aggressive state. METHODS: We analyzed ZNF507 expression in the data from various human PC database and high-grade PC patient samples. By establishment of ZNF507 knockdown and overexpression human PC cell lines, we assessed in vitro PC phenotype changes including cell proliferation, survival, migration and invasion. By performing microarray with ZNF507 knockdown PC cells, we profiled the gene clusters affected by ZNF507 knockdown. Moreover, ZNF507 regulated key signal was evaluated by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Finally, we performed xenograft and in vivo metastasis assay to confirm the effect of ZNF507 knockdown in PC cells. RESULTS: We found that ZNF507 expression was increased, particularly in the highly graded PC. ZNF507 was also found to be associated with metastatic PC of a high grade. Loss- or gain-of-function-based analysis revealed that ZNF507 promotes the growth, survival, proliferation, and metastatic properties of PC (e.g., epithelial-mesenchymal transition) by upregulating TGF-ß signaling. Profiling of gene clusters affected by ZNF507 knockdown revealed that ZNF507 positively regulated the transcription of TGFBR1, MAP3K8, and FURIN, which in turn promoted the progression of PC to highly metastatic and aggressive state. CONCLUSIONS: Our findings suggest that ZNF507 is a novel key regulator of TGF-ß signaling in the progression of malignant PC and could be a promising target for studying the development of advanced metastatic PCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose/genética , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Progressão da Doença , Suscetibilidade a Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , Modelos Biológicos , Prognóstico , Neoplasias da Próstata/etiologia
6.
Cell Biochem Funct ; 39(1): 67-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32529664

RESUMO

Mouse embryonic stem cells (mESCs) are pluripotent cells that possess the ability to self-renew and differentiate into three germ layers. Owing to these characteristics, mESCs act as important models for stem cell research and are being used in many clinical applications. Among the many cathepsins, cathepsin A (Ctsa), a serine protease, affects the function and properties of stem cells. However, studies on the role of Ctsa in stem cells are limited. Here, we observed a significant increase in Ctsa expression during mESC differentiation at protein levels. Furthermore, we established Ctsa knockdown mESCs. Ctsa knockdown led to Erk1/2 phosphorylation, which in turn inhibited the pluripotency of mESCs and induced G2/M cell cycle arrest to inhibit mESC proliferation. The knockdown also induced abnormal differentiation in mESCs and aberrant expression of differentiation markers. Furthermore, we identified inhibition of teratoma formation in nude mice. Our results suggested that Ctsa affects mESC pluripotency, proliferation, cell cycle and differentiation, and highlighted the potential of Ctsa to act as a core factor that can regulate various mESC properties. SIGNIFICANCE OF THE STUDY: Our results indicate that cathepsin A (Ctsa) affects the properties of mESCs. Inhibition of Ctsa resulted in a decrease in the pluripotency of mouse embryonic stem cells (mESCs). Further, Ctsa suppression resulted in decreased proliferation via cell cycle arrest. Moreover, Ctsa inhibition reduced differentiation abilities and formation of teratoma in mESCs. Our results demonstrated that Ctsa is an important factor controlling mESC abilities.


Assuntos
Catepsina A/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Células-Tronco Embrionárias Murinas/enzimologia , Animais , Catepsina A/genética , Linhagem Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Pontos de Checagem da Fase M do Ciclo Celular/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia
7.
Arch Biochem Biophys ; 688: 108407, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32407712

RESUMO

Prostate cancer has the highest incidence among men in advanced countries, as well as a high mortality rate. Despite the efforts of numerous researchers to identify a gene-based therapeutic target as an effective treatment of prostate cancer, there is still a need for further research. The cathepsin gene family is known to have a close correlation with various cancer types and is highly expressed across these cancer types. This study aimed at investigating the correlation between the cathepsin A (CTSA) gene and prostate cancer. Our findings indicated a significantly elevated level of CTSA gene expression in the tissues of patients with prostate cancer when compared with normal prostate tissues. Furthermore, the knockdown of the CTSA gene in the representative prostate cancer cell lines PC3 and DU145 led to reduced proliferation and a marked reduction in anchorage-independent colony formation, which was shown to be caused by cell cycle arrest in the S phase. In addition, CTSA gene-knockdown prostate cancer cell lines showed a substantial decrease in migration and invasion, as well as a decrease in the marker genes that promote epithelial mesenchymal transition (EMT). Such phenotypic changes in prostate cancer cell lines through CTSA gene suppression were found to be mainly caused by reduced p38 MAPK protein phosphorylation; i.e. the inactivation of the p38 MAPK cell signaling pathway. Tumorigenesis was also found to be inhibited in CTSA gene-knockdown prostate cancer cell lines when a xenograft assay was carried out using Balb/c nude mice, and the p38 MAPK phosphorylation was inhibited in tumor tissues. Thus, the CTSA gene is presumed to play a key role in human prostate cancer tissues through high-level expression, and the suppression of the CTSA gene leads to the inhibition of prostate cancer cell proliferation, colony formation, and metastasis. The mechanism, by which these effects occur, was demonstrated to be the inactivation of the p38 MAPK signaling pathway.


Assuntos
Catepsina A/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais/fisiologia , Animais , Sequência de Bases , Catepsina A/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Metástase Neoplásica/genética , Metástase Neoplásica/fisiopatologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Cell Biochem ; 121(11): 4667-4679, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32065444

RESUMO

Mouse embryonic stem cells (mESCs) exhibit self-renewal and pluripotency, can differentiate into all three germ layers, and serve as an essential model in stem cell research and for potential clinical application in regenerative medicine. Melanoma-associated antigen A2 (MAGEA2) is not expressed in normal somatic cells but rather in different types of cancer, especially in undifferentiated cells, such as in the testis, differentiating cells, and ESCs. However, the role of MAGEA2 in mESCs remains to be clarified. Accordingly, in this study, we examined the expression and functions of MAGEA2 in mESCs. MAGEA2 messenger RNA (mRNA) expression was decreased during mESCs differentiation. MAGEA2 function was then evaluated in knockdown mESC. MAGEA2 knockdown resulted in decreased pluripotency marker gene expression in mESCs consequent to increased Erk1/2 phosphorylation. Decreased MAGEA2 expression inhibited mESC proliferation via S phase cell cycle arrest with a subsequent decrease in cell cycle-associated genes Cdk1, Cdk2, Cyclin A1, Cyclin D1, and Cdc25a. Apoptotic mESCs markedly increased along with cleaved forms of caspases 3, 6, and 7 and PARP expression, confirming caspase-dependent apoptosis. MAGEA2 knockdown significantly decreased embryoid body size in vitro when cells were differentiated naturally and teratoma size in vivo, concomitant with decreased ectoderm marker gene expression. These findings suggested that MAGEA2 regulates ESC pluripotency, proliferation, cell cycle, apoptosis, and differentiation. The enhanced understanding of the regulatory mechanisms underlying diverse mESC characteristics will facilitate the clinical application of mESCs.


Assuntos
Apoptose , Diferenciação Celular , Proliferação de Células , Antígenos Específicos de Melanoma/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Teratoma/patologia , Animais , Ciclo Celular , Células Cultivadas , Humanos , Masculino , Antígenos Específicos de Melanoma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Teratoma/metabolismo
9.
Cell Cycle ; 18(21): 2954-2971, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31505996

RESUMO

In previous work, we established an equine induced pluripotent stem cell line (E-iPSCs) from equine adipose-derived stem cells (ASCs) using a lentiviral vector encoding four transcription factors: Oct4, Sox2, Klf4, and c-Myc. In the current study, we attempted to differentiate these established E-iPSCs into mesenchymal stem cells (MSCs) by serial passaging using MSC-defined media for stem cell expansion. Differentiation of the MSCs was confirmed by analyzing expression levels of the MSC surface markers CD44 and CD29, and the pluripotency markers Nanog and Oct4. Results indicated that the E-iPSC-derived MSCs (E-iPSC-MSCs) retained the characteristics of MSCs, including the ability to differentiate into chondrogenic, osteogenic, or myogenic lineages. E-iPSC-MSCs were rendered suitable for therapeutic use by inhibiting immune rejection through exposure to transforming growth factor beta 2 (TGF-ß2) in culture, which down-regulated the expression of major histocompatibility complex class I (MHC class I) proteins that cause immune rejection if they are incompatible with the MHC antigen of the recipient. We reported 16 cases of E-iPSC-MSC transplantations into injured horses with generally positive effects, such as reduced lameness and fraction lines. Our findings indicate that E-iPSC-MSCs can demonstrate MSC characteristics and be safely and practically used in the treatment of musculoskeletal injuries in horses.


Assuntos
Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Rejeição de Enxerto/prevenção & controle , Células-Tronco Pluripotentes Induzidas/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Desenvolvimento Ósseo/fisiologia , Células Cultivadas , Condrócitos/citologia , Condrogênese/fisiologia , Rejeição de Enxerto/imunologia , Cavalos , Fator 4 Semelhante a Kruppel , Células Musculares/citologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/lesões , Osteócitos/citologia , Fator de Crescimento Transformador beta2/metabolismo
10.
Cell Biochem Funct ; 37(8): 608-617, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31502671

RESUMO

Mouse embryonic stem cells (mESCs) are characterized by their self-renewal and pluripotency and are capable of differentiating into all three germ layers. For this reason, mESCs are considered a very important model for stem cell research and clinical applications in regenerative medicine. The pre-mRNA processing factor 4 (PRPF4) gene is known to have a major effect on pre-mRNA splicing and is also known to affect tissue differentiation during development. In this study, we investigated the effects of PRPF4 knockdown on mESCs. First, we allowed mESCs to differentiate naturally and observed a significant decrease in PRPF4 expression during the differentiation process. We then artificially induced the knockdown of PRPF4 in mESCs and observed the changes in the phenotype. When PRPF4 was knocked down, various genes involved in mESC pluripotency showed significantly decreased expression. In addition, mESC proliferation increased abnormally, accompanied by a significant increase in mESC colony size. The formation of mESC embryoid bodies and teratomas was delayed following PRPF4 knockdown. Based on these results, the reduced expression of PRPF4 affects mESC phenotypes and is a key factor in mESC. SIGNIFICANCE OF THE STUDY: Our results indicate that PRPF4 affects the properties of mESCs. Suppression of PRPF4 resulted in a decrease in pluripotency of mESC and promoted proliferation. In addition, suppression of PRPF4 also resulted in decreased apoptosis. Moreover, the inhibition of PRPF4 reduced the ability to differentiate and formation of teratoma in mESC. Our results demonstrated that PRPF4 is a key factor of controlling mESC abilities.


Assuntos
Diferenciação Celular , Proliferação de Células , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Animais , Células Cultivadas , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/antagonistas & inibidores , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Teratoma/genética , Teratoma/patologia
11.
Mol Cell Probes ; 47: 101440, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31445970

RESUMO

Pre-mRNA processing factor 4 (PRPF4), a core protein in U4/U6 snRNP, maintains snRNP structures by interacting with PRPF3 and cyclophilin H. Expression of the PRPF4 gene affects cell survival as well as apoptosis and is responsible for retinitis pigmentosa (RP). Proteomics analysis shows that PRPF4 may be a therapeutic target in human cancers. Nevertheless, the exact function and role of the PRPF4 gene are unclear. In this study, we assessed the expression of PRPF4 gene in human breast cancer cells. First, we confirmed that the PRPF4 gene was overexpressed in various breast cancer cell lines. Next, using breast cancer cell lines MCF7 and MDA-MB-468, we established stable cell lines with PRPF4 gene knockdown. We also performed microarray analysis to investigate molecular mechanisms underlying PRPF4 activity. All cell lines with PRPF4 gene knockdown exhibited reduced cell proliferation, remarkable reduction in anchorage-independent colony formation capacity, and reduction of PCNA protein, which is a marker cell of proliferation. Reduced expression of the PRPF4 gene induced apoptosis and changes in the expression of associated apoptotic markers in breast cancer cell lines. Knockdown of the PRPF4 gene reduced cellular capacity for migration and invasion (the key hallmarks of human cancers) and decreased the expression of genes involved in epithelial-mesenchymal transition (EMT). Microarray results showed that the expression of PPIP5K1, PPIPK2, and YWHAE genes was reduced at the transcriptional level, leading to reduced phosphorylation of p38 MAPK. These findings suggest that knockdown of PRPF4 gene slows down breast cancer progression via suppression of p38 MAPK phosphorylation. In conclusion, the PRPF4 gene plays an important role in the growth of breast cancer cells and is therefore a potential therapeutic target.


Assuntos
Neoplasias da Mama/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Fosforilação
12.
J Vet Med Sci ; 69(8): 787-92, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17827883

RESUMO

A total of 384 Thoroughbred mares were investigated to determine and evaluate the features of early embryonic death at nine equine farms on Jeju Island, South Korea, from 2001 to 2003. Overall, 771 matings for 384 mares resulted in 376 pregnancies 15 days after ovulation. Subsequently, 12.2% (46/376) of these early conceptuses were lost within 45 days after ovulation. Furthermore, about three quarters of the 46 embryonic deaths occurred between 16 and 25 days after ovulation. The incidence of embryonic death was highest in the barren (17.2%), more than 15 years old (15.4%), and more than 10 parities (18.2%) groups compared with the other groups (9.1-16.9%). Mares mated in March, April, and during the first estrus postpartum had higher embryonic death rates, (19.6%, 17.2%, and 24.6%, respectively). Mares with abnormal fluid and cysts in the uterus (18.0%) or multiple embryonic vesicles (23.1%) had higher embryonic death rates than those with normal uterine conditions (9.8%) or single embryonic vesicles (10.5%). The condition of mares, such as breeding condition and the environment of the embryo or fetus, are the major factors in relation to occurrence of early embryonic death.


Assuntos
Aborto Animal , Perda do Embrião/veterinária , Doenças dos Cavalos , Animais , Feminino , Cavalos , Coreia (Geográfico) , Gravidez , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA