Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolism ; 142: 155527, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870601

RESUMO

BACKGROUND AND AIMS: Obesity is a state of chronic low-grade systemic inflammation. Recent studies showed that NLRP3 inflammasome initiates metabolic dysregulation in adipose tissues, primarily through activation of adipose tissue infiltrated macrophages. However, the mechanism of NLRP3 activation and its role in adipocytes remains elusive. Therefore, we aimed to examine the activation of TNFα-induced NLRP3 inflammasome in adipocytes and its role on adipocyte metabolism and crosstalk with macrophages. METHODS: The effect of TNFα on adipocyte NLRP3 inflammasome activation was measured. Caspase-1 inhibitor (Ac-YVAD-cmk) and primary adipocytes from NLRP3 and caspase-1 knockout mice were utilized to block NLRP3 inflammasome activation. Biomarkers were measured by using real-time PCR, western blotting, immunofluorescence staining, and enzyme assay kits. Conditioned media from TNFα-stimulated adipocytes was used to establish the adipocyte-macrophage crosstalk. Chromatin immunoprecipitation assay was used to identify the role of NLRP3 as a transcription factor. Mouse and human adipose tissues were collected for correlation analysis. RESULTS: TNFα treatment induced NLRP3 expression and caspase-1 activity in adipocytes, partly through autophagy dysregulation. The activated adipocyte NLRP3 inflammasome participated in mitochondrial dysfunction and insulin resistance, as evidenced by the amelioration of these effects in Ac-YVAD-cmk treated 3T3-L1 cells or primary adipocytes isolated from NLRP3 and caspase-1 knockout mice. Particularly, the adipocyte NLRP3 inflammasome was involved in glucose uptake regulation. Also, TNFα induced expression and secretion of lipocalin 2 (Lcn2) in a NLRP3-dependent manner. NLRP3 could bind to the promoter and transcriptionally regulate Lcn2 in adipocytes. Treatment with adipocyte conditioned media revealed that adipocyte-derived Lcn2 was responsible for macrophage NLRP3 inflammasome activation, working as a second signal. Adipocytes isolated from high-fat diet mice and adipose tissue from obese individuals showed a positive correlation between NLRP3 and Lcn2 gene expression. CONCLUSIONS: This study highlights the importance of adipocyte NLRP3 inflammasome activation and novel role of TNFα-NLRP3-Lcn2 axis in adipose tissue. It adds rational for the current development of NLRP3 inhibitors for treating obesity-induced metabolic diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Animais , Lipocalina-2/genética , Lipocalina-2/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Meios de Cultivo Condicionados/farmacologia , Adipócitos/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Camundongos Knockout , Caspases/metabolismo , Caspases/farmacologia
2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233141

RESUMO

Cell-assisted lipotransfer (CAL), defined as co-transplantation of aspirated fat with enrichment of adipose-derived stem cells (ASCs), is a novel technique for cosmetic and reconstructive surgery to overcome the low survival rate of traditional fat grafting. However, clinically approved techniques for increasing the potency of ASCs in CAL have not been developed yet. As a more clinically applicable method, we used mechanical stress to reinforce the potency of ASCs. Mechanical stress was applied to the inguinal fat pad by needling . Morphological and cellular changes in adipose tissues were examined by flow cytometric analysis 1, 3, 5, and 7 days after the procedure. The proliferation and adipogenesis potencies of ASCs were evaluated. CAL with ASCs treated with mechanical stress or sham control were performed, and engraftment was determined at 4 weeks post-operation. Flow cytometry analysis revealed that mechanical stress significantly increased the number as well as the frequency of ASC proliferation in fat. Proliferation assays and adipocyte-specific marker gene analysis revealed that mechanical stress promoted proliferation potential but did not affect the differentiation capacity of ASCs. Moreover, CAL with cells derived from mechanical stress-treated fat increased the engraftment. Our results indicate that mechanical stress may be a simple method for improving the efficacy of CAL by enhancing the proliferation potency of ASCs.


Assuntos
Tecido Adiposo , Sobrevivência de Enxerto , Proliferação de Células , Células-Tronco , Estresse Mecânico
3.
J Cachexia Sarcopenia Muscle ; 13(6): 3149-3162, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36127129

RESUMO

BACKGROUND: The effects of some drugs, aging, cancers, and other diseases can cause muscle wasting. Currently, there are no effective drugs for treating muscle wasting. In this study, the effects of ginsenoside Rd (GRd) on muscle wasting were studied. METHODS: Tumour necrosis factor-alpha (TNF-α)/interferon-gamma (IFN-γ)-induced myotube atrophy in mouse C2C12 and human skeletal myoblasts (HSkM) was evaluated based on cell thickness. Atrophy-related signalling, reactive oxygen species (ROS) level, mitochondrial membrane potential, and mitochondrial number were assessed. GRd (10 mg/kg body weight) was orally administered to aged mice (23-24 months old) and tumour-bearing (Lewis lung carcinoma [LLC1] or CT26) mice for 5 weeks and 16 days, respectively. Body weight, grip strength, inverted hanging time, and muscle weight were assessed. Histological analysis was also performed to assess the effects of GRd. The evolutionary chemical binding similarity (ECBS) approach, molecular docking, Biacore assay, and signal transducer and activator of transcription (STAT) 3 reporter assay were used to identify targets of GRd. RESULTS: GRd significantly induced hypertrophy in the C2C12 and HSkM myotubes (average diameter 50.8 ± 2.6% and 49.9% ± 3.7% higher at 100 nM, vs. control, P ≤ 0.001). GRd treatment ameliorated aging- and cancer-induced (LLC1 or CT26) muscle atrophy in mice, which was evidenced by significant increases in grip strength, hanging time, muscle mass, and muscle tissue cross-sectional area (1.3-fold to 4.6-fold, vs. vehicle, P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). STAT3 was found to be a possible target of GRd by the ECBS approach and molecular docking assay. Validation of direct interaction between GRd and STAT3 was confirmed through Biacore analysis. GRd also inhibited STAT3 phosphorylation and STAT3 reporter activity, which led to the inhibition of STAT3 nuclear translocation and the suppression of downstream targets of STAT3, such as atrogin-1, muscle-specific RING finger protein (MuRF-1), and myostatin (MSTN) (29.0 ± 11.2% to 84.3 ± 30.5%, vs. vehicle, P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). Additionally, GRd scavenged ROS (91.7 ± 1.4% reduction at 1 nM, vs. vehicle, P ≤ 0.001), inhibited TNF-α-induced dysregulation of ROS level, and improved mitochondrial integrity (P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). CONCLUSIONS: GRd ameliorates aging- and cancer-induced muscle wasting. Our findings suggest that GRd may be a novel therapeutic agent or adjuvant for reversing muscle wasting.


Assuntos
Carcinoma Pulmonar de Lewis , Mioblastos Esqueléticos , Fator de Transcrição STAT3 , Animais , Humanos , Camundongos , Caquexia/etiologia , Carcinoma Pulmonar de Lewis/complicações , Simulação de Acoplamento Molecular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Fator de Necrose Tumoral alfa
4.
Diabetes ; 71(11): 2297-2312, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35983955

RESUMO

The innate immune kinase TBK1 (TANK-binding kinase 1) responds to microbial-derived signals to initiate responses against viral and bacterial pathogens. More recent work implicates TBK1 in metabolism and tumorigenesis. The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental cues to control fundamental cellular processes. Our prior work demonstrated in cells that TBK1 phosphorylates mTOR (on S2159) to increase mTORC1 and mTORC2 catalytic activity and signaling. Here we investigate a role for TBK1-mTOR signaling in control of glucose metabolism in vivo. We find that mice with diet-induced obesity (DIO) but not lean mice bearing a whole-body "TBK1-resistant" Mtor S2159A knock-in allele (MtorA/A) display exacerbated hyperglycemia and systemic insulin resistance with no change in energy balance. Mechanistically, Mtor S2159A knock-in in DIO mice reduces mTORC1 and mTORC2 signaling in response to insulin and innate immune agonists, reduces anti-inflammatory gene expression in adipose tissue, and blunts anti-inflammatory macrophage M2 polarization, phenotypes shared by mice with tissue-specific inactivation of TBK1 or mTOR complexes. Tissues from DIO mice display elevated TBK1 activity and mTOR S2159 phosphorylation relative to lean mice. We propose a model whereby obesity-associated signals increase TBK1 activity and mTOR phosphorylation, which boost mTORC1 and mTORC2 signaling in parallel to the insulin pathway, thereby attenuating insulin resistance to improve glycemic control during diet-induced obesity.


Assuntos
Hiperglicemia , Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/genética , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Sirolimo/farmacologia , Insulina/metabolismo , Obesidade/genética , Camundongos Obesos , Hiperglicemia/genética , Glucose , Proteínas Serina-Treonina Quinases/genética
5.
J Nutr Biochem ; 110: 109127, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977667

RESUMO

Fatty acid esters of hydroxyl fatty acids (FAHFAs) are a new family of endogenous lipids that exert anti-inflammatory action. Among the various FAHFA isomers, the dietary source of oleic acid-hydroxy stearic acid (OAHSA) and its anti-inflammatory functions are poorly understood. This study investigated the composition of OAHSA isomers in dietary oils and the impact of 12-OAHSA on obesity-induced inflammation. Liquid chromatography with tandem mass spectrometry analysis revealed that various dietary oils, including fish oil, corn oil, palm oil, soybean oil, and olive oil, present a wide variation in OAHSA profiles and amounts. The highest amounts of total OAHSAs are present in olive oil including 12-OAHSA. Compared to vehicle-treated obese mice, administration of 12-OAHSA significantly improved glucose homeostasis, independent of body weight. 12-OAHSA-treated mice displayed significantly reduced accumulation of CD11c+ adipose tissue macrophages, and CD4+/CD8+ adipose tissue T lymphocytes. Concomitantly, the expression of pro-inflammatory cytokine genes and the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway were significantly decreased in the 12-OAHSA-treated adipose tissue, while the expression of the anti-inflammatory gene Il10 was markedly increased. Moreover, in vitro cell culture experiments showed that 12-OAHSA significantly inhibited the lipopolysaccharides-induced inflammatory response in macrophages by suppressing the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway. Collectively, these results indicated that 12-OAHSA, as a component of olive oil, mitigates obesity-induced insulin resistance by regulating AT inflammation. Therefore, 12-OAHSA could be used as a novel nutritional intervention against obesity-associated metabolic dysregulation.


Assuntos
Obesidade , Ácido Oleico , Camundongos , Animais , Azeite de Oliva/farmacologia , Obesidade/metabolismo , Inflamação/prevenção & controle , Inflamação/metabolismo , Ácidos Graxos/metabolismo , Ácidos Esteáricos , Óleo de Milho , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
6.
Tissue Eng Regen Med ; 19(5): 1051-1061, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852724

RESUMO

BACKGROUND: Angiogenesis plays an important role in determining the fat graft survival. However, clinical preconditioning techniques that target angiogenesis during fat grafting have not been established so far. Adenosine has emerged as a regulator of angiogenesis under hypoxic conditions; therefore, the aim of this study was to investigate the effects and underlying mechanisms of adenosine prefabrication on fat graft survival. METHODS: In the first animal study, a total of 32 mice were transplanted with fat prefabricated with vehicle (Control, N = 16) or adenosine (Adenosine, N = 16). In the second animal study, 24 mice were divided into three groups based on the type of fat graft: Control (N = 8), Adenosine (N = 8), and Axitinib (cotreatment of adenosine with axitinib, N = 8). At 1- and 4-weeks post-transplantation, grafts were evaluated by histopathological and biochemical assessment. Adenosine-induced vascular endothelial growth factor (VEGF) production and angiogenesis were determined using cell cultures. RESULTS: The retention volumes of fat grafts in the adenosine group were significantly increased until 4 weeks. Fat grafts from the adenosine group exhibited greater structural integrity, reduced fibrosis, and increased blood vessels. The expression levels of angiogenesis-related genes, Vegfa, Vegfr1, Vegfr2, and Vwf, were elevated in the adenosine group. Furthermore, adenosine upregulated VEGF production in preadipocytes, thereby enhancing the migration of endothelial cells. Treatment with the axitinib, VEGF receptor inhibitor, abrogated the adenosine-induced angiogenesis in the fat grafts. CONCLUSION: Adenosine prefabrication in fat improved the graft survival by enhancing angiogenesis through the VEGF/VEGFR axis in the preadipocytes and endothelial cells. Therefore, this method may be used as a novel strategy to increase the retention rate in fat grafts.


Assuntos
Sobrevivência de Enxerto , Fator A de Crescimento do Endotélio Vascular , Adenosina/metabolismo , Adenosina/farmacologia , Tecido Adiposo/metabolismo , Animais , Axitinibe/farmacologia , Células Endoteliais/metabolismo , Camundongos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Fator de von Willebrand/metabolismo , Fator de von Willebrand/farmacologia
7.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990410

RESUMO

Increased adipose tissue macrophages (ATMs) correlate with metabolic dysfunction in humans and are causal in development of insulin resistance in mice. Recent bulk and single-cell transcriptomics studies reveal a wide spectrum of gene expression signatures possible for macrophages that depends on context, but the signatures of human ATM subtypes are not well defined in obesity and diabetes. We profiled 3 prominent ATM subtypes from human adipose tissue in obesity and determined their relationship to type 2 diabetes. Visceral adipose tissue (VAT) and s.c. adipose tissue (SAT) samples were collected from diabetic and nondiabetic obese participants to evaluate cellular content and gene expression. VAT CD206+CD11c- ATMs were increased in diabetic participants, were scavenger receptor-rich with low intracellular lipids, secreted proinflammatory cytokines, and diverged significantly from 2 CD11c+ ATM subtypes, which were lipid-laden, were lipid antigen presenting, and overlapped with monocyte signatures. Furthermore, diabetic VAT was enriched for CD206+CD11c- ATM and inflammatory signatures, scavenger receptors, and MHC II antigen presentation genes. VAT immunostaining found CD206+CD11c- ATMs concentrated in vascularized lymphoid clusters adjacent to CD206-CD11c+ ATMs, while CD206+CD11c+ were distributed between adipocytes. Our results show ATM subtype-specific profiles that uniquely contribute to the phenotypic variation in obesity.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica , Resistência à Insulina/genética , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Obesidade/genética , Receptores Imunológicos/genética , Adipócitos/metabolismo , Tecido Adiposo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Seguimentos , Humanos , Macrófagos/patologia , Masculino , Glicoproteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Receptores Imunológicos/biossíntese , Fatores de Tempo , Adulto Jovem
8.
Aesthetic Plast Surg ; 46(3): 1439-1449, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34676429

RESUMO

BACKGROUND: Most preconditioning techniques before fat grafting require external manipulation. Since nutrition is the main factor maintaining the balance of lipogenesis and lipolysis, we hypothesized that fasting before undergoing autologous fat grafting may increase lipolysis and reduce adipocyte size, thereby improving the fat graft survival rate. METHODS: C57BL/6 mice were divided into 24 h starved or fed groups. Adipose tissue lipolysis, adipogenesis, and angiogenesis-related gene expression, in fat from both groups, were analyzed. The volume and weight of the grafted fat at 4-8 weeks postoperatively were measured using micro-computed tomography. Immunohistochemistry staining and mRNA expression analysis were also performed to evaluate the effect of fasting on fat graft survival. RESULTS: Fasting decreased adipocyte size by inducing adipose tissue lipolysis. Adipogenesis-related genes were remarkably downregulated while lipolysis-related genes and angiogenesis inducer genes were significantly upregulated in the starved adipose tissue. The mice grafted with the fat from the 24 h starved group had approximately 20% larger volumes and considerably heavier weights than those from the fed group. Increased viable adipocytes and vessels, and reduced macrophages in the fat grafts obtained from the 24 h starved group were also observed. CONCLUSIONS: Fasting for 24 h before harvesting fat increased the retention volume of fat graft by increasing angiogenesis via VEGF induction. Therefore, fasting would be a novel and reliable preconditioning strategy to improve graft survival in autologous fat grafting. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Assuntos
Jejum , Sobrevivência de Enxerto , Tecido Adiposo/transplante , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microtomografia por Raio-X
9.
Mol Metab ; 55: 101402, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838715

RESUMO

OBJECTIVE: Diet-induced obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which instigates severe metabolic disorders, including cirrhosis, hepatocellular carcinoma, and type 2 diabetes. We have shown that hepatic depletion of CREB regulated transcription co-activator (CRTC) 2 protects mice from the progression of diet-induced fatty liver phenotype, although the exact mechanism by which CRTC2 modulates this process is elusive to date. Here, we investigated the role of hepatic CRTC2 in the instigation of NAFLD in mammals. METHODS: Crtc2 liver-specific knockout (Crtc2 LKO) mice and Crtc2 flox/flox (Crtc2 f/f) mice were fed a high fat diet (HFD) for 7-8 weeks. Body weight, liver weight, hepatic lipid contents, and plasma triacylglycerol (TG) levels were determined. Western blot analysis was performed to determine Sirtuin (SIRT) 1, tuberous sclerosis complex (TSC) 2, and mammalian target of rapamycin complex (mTORC) 1 activity in the liver. Effects of Crtc2 depletion on lipogenesis was determined by measuring lipogenic gene expression (western blot analysis and qRT-PCR) in the liver as well as Oil red O staining in hepatocytes. Effects of miR-34a on mTORC1 activity and hepatic lipid accumulation was assessed by AAV-miR-34a virus in mice and Ad-miR-34a virus and Ad-anti-miR-34a virus in hepatocytes. Autophagic flux was assessed by western blot analysis after leupeptin injection in mice and bafilomycin treatment in hepatocytes. Lipophagy was assessed by transmission electron microscopy and confocal microscopy. Expression of CRTC2 and p-S6K1 in livers of human NAFLD patients was assessed by immunohistochemistry. RESULTS: We found that expression of CRTC2 in the liver is highly induced upon HFD-feeding in mice. Hepatic depletion of Crtc2 ameliorated HFD-induced fatty liver disease phenotypes, with a pronounced inhibition of the mTORC1 pathway in the liver. Mechanistically, we found that expression of TSC2, a potent mTORC1 inhibitor, was enhanced in Crtc2 LKO mice due to the decreased expression of miR-34a and the subsequent increase in SIRT1-mediated deacetylation processes. We showed that ectopic expression of miR-34a led to the induction of mTORC1 pathway, leading to the hepatic lipid accumulation in part by limiting lipophagy and enhanced lipogenesis. Finally, we found a strong association of CRTC2, miR-34a and mTORC1 activity in the NAFLD patients in humans, demonstrating a conservation of signaling pathways among species. CONCLUSIONS: These data collectively suggest that diet-induced activation of CRTC2 instigates the progression of NAFLD by activating miR-34a-mediated lipid accumulation in the liver via the simultaneous induction of lipogenesis and inhibition of lipid catabolism. Therapeutic approach to specifically inhibit CRTC2 activity in the liver could be beneficial in combating NAFLD in the future.


Assuntos
Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Autofagia/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Fatores de Transcrição/genética
10.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445379

RESUMO

Chronic inflammation of the adipose tissue (AT) is a critical component of obesity-induced insulin resistance and type 2 diabetes. Adipose tissue immune cells, including AT macrophages (ATMs), AT dendritic cells (ATDCs), and T cells, are dynamically regulated by obesity and participate in obesity-induced inflammation. Among AT resident immune cells, ATDCs are master immune regulators and engage in crosstalk with various immune cells to initiate and regulate immune responses. However, due to confounding markers and lack of animal models, their exact role and contribution to the initiation and maintenance of AT inflammation and insulin resistance have not been clearly elucidated. This paper reviews the current understanding of ATDCs and their role in obesity-induced AT inflammation. We also provide the potential mechanisms by which ATDCs regulate AT inflammation and insulin resistance in obesity. Finally, this review offers perspectives on ways to better dissect the distinct functions and contributions of ATDCs to obesity.


Assuntos
Tecido Adiposo/citologia , Diabetes Mellitus Tipo 2/etiologia , Resistência à Insulina/imunologia , Obesidade/imunologia , Tecido Adiposo/imunologia , Animais , Apresentação de Antígeno , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 2/imunologia , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Aesthet Surg J ; 41(7): NP875-NP886, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33784374

RESUMO

BACKGROUND: The longevity of polydioxanone (PDO)-barbed lifting threads remains controversial. OBJECTIVES: The authors sought to assess the longevity extension effect of a crisscross implantation pattern in PDO-barbed thread lifting. METHODS: To acquire the desired outcome in PDO-barbed thread lifting, the authors suggested a paradigm shift to incorporate biochemical factors in enforcing the physico-mechanical lift. A nude mouse model was employed to evaluate their theory to compare the conventional fan-shaped protocols in barbed thread lifting with an architectural construction of intersections of fibrous capsule in a crisscross pattern. Three fragments of monofilament PDO-barbed-lifting threads were implanted in the dorsal skin of 12 nude mice. The pattern of implantation was fan-shaped in the control group and crisscross in the experimental group. Tissue specimens containing tangential areas of threads were harvested, fixed, and paraffin-embedded. Samples were horizontally cut and histologically analyzed employing hematoxylin and eosin, Massons' Trichrome, and Sirius red staining. Fibrotic areas and the width of fibrosis from the thread were also analyzed. RESULTS: Fibrous capsulations around the barbed area of the PDO-barbed lifting threads were threefold greater than those around the barb-free areas of the threads. In the crisscross implantation pattern, width and density of the fibrotic areas were fivefold greater than those of the fan-shaped areas. Induction of fibrous capsules around the PDO-barbed thread was markedly condensed in the crisscross areas. CONCLUSIONS: This study provides the basis for a more logical implantation pattern in PDO-barbed lifting threads for facial rejuvenation. By generating controlled multiple crisscross patterns, we can create more intense fibrogenesis, reduce tension applied on each barbed thread, and, therefore, extend the longevity of the result.


Assuntos
Polidioxanona , Ritidoplastia , Animais , Fibrose , Camundongos , Camundongos Nus , Suturas
12.
J Clin Endocrinol Metab ; 104(6): 2257-2266, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657970

RESUMO

OBJECTIVE: Obesity is an independent risk factor for chronic kidney disease. Recently, urinary mitochondrial DNA (mtDNA) has been used as a surrogate marker of mitochondrial damage in various kidney diseases. However, there are no data regarding its use in patients with obesity or the change in urinary mtDNA copy number after surgery. DESIGN: We prospectively recruited age- and sex-matched healthy volunteers and patients with obesity (n = 22 in each group: nine men and 13 women). The copy number of urinary and serum mtDNA nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND-1) and cytochrome-c oxidase 3 (mtCOX-3) was measured using quantitative PCR. We measured urinary mtDNA and body weight and carried out laboratory tests, 6 months after surgery. RESULTS: Urinary mtND-1 copy number was significantly higher in the obese group than in healthy volunteers. However, urinary mtCOX-3 and serum ND-1 copy numbers in the obese group did not differ from that in the healthy volunteers. When patients with obesity were divided into two groups, according to their baseline mtND-1 copy number, bariatric surgery reduced the mtND-1 copy number (P = 0.006) in the high baseline mtDNA copy-number group. The change in urinary mtND-1 copy number was correlated with a change in urinary albumin (r = 0.478, P = 0.025). CONCLUSIONS: Obesity is associated with elevated urinary mtND-1 copy number. Bariatric surgery reduces the elevated urinary mtND-1 copy number in patients with obesity. This suggests that bariatric surgery could attenuate mitochondrial damage in the kidney cells of patients with obesity.


Assuntos
Cirurgia Bariátrica , DNA Mitocondrial/urina , Dosagem de Genes , Obesidade/genética , Adulto , Complexo IV da Cadeia de Transporte de Elétrons/sangue , Complexo IV da Cadeia de Transporte de Elétrons/urina , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , NADH Desidrogenase/sangue , NADH Desidrogenase/urina , Estudos Prospectivos
13.
Aesthetic Plast Surg ; 42(6): 1681-1688, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30194505

RESUMO

BACKGROUND: Carboxytherapy is the transcutaneous administration of CO2 gas for therapeutic purposes. Although this non-surgical procedure has been widely used for reducing localized adiposity, its effectiveness on fat loss in obese patients and its underlying mechanisms remain unclear. METHODS: C57BL/6 mice were fed with a high-fat diet for 8 weeks to generate obese animal models. Obese mice were randomly assigned to two groups: One group was administered air to both inguinal fat pads (air/air), and the other group was treated with air to the left inguinal fat pad and with CO2 to the right inguinal fat pad (air/CO2). Each group was treated every other day for 2 weeks. Morphological changes and expression levels of genes associated with lipogenesis and vascularization in fat were determined by histological and qRT-PCR analyses. RESULTS: Mice treated with air/CO2 showed lower body weights and blood glucose levels compared to air/air-treated mice. Paired comparison analysis revealed that CO2 administration significantly decreased adipose tissue weights and adipocyte sizes compared to air treatment. Additionally, CO2 treatment markedly increased vessel numbers and expressions of Vegfa and Fgf1 genes in adipose tissues. The expressions of Fasn and Fabp4 genes were also modestly reduced in CO2-treated adipose tissue. Moreover, Ucp1 expression, the target gene of VEGF and a key regulator in energy expenditure, was significantly increased in CO2-treated adipose tissue. CONCLUSIONS: Carboxytherapy is effective in the reduction of localized fat in obese patients which is mechanistically associated with alteration of the vasculature involved in VEGF. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Tecido Adiposo/metabolismo , Dióxido de Carbono/administração & dosagem , Obesidade/terapia , Proteína Desacopladora 1/genética , Fator A de Crescimento do Endotélio Vascular/genética , Redução de Peso , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Resultado do Tratamento
14.
J Med Food ; 21(7): 665-671, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29969359

RESUMO

Red pepper seed, a by-product of red pepper, has been reported to have antioxidant and antiobesity activities. However, its role in diabetes has not yet been highly investigated. Glucose homeostasis is mainly maintained by insulin, which suppresses glucose production in the liver and enhances glucose uptake in peripheral tissues. In this study, we investigated the underlying mechanisms through which red pepper seed extract (RPSE) affects glucose production in AML12 hepatocytes and glucose uptake in C2C12 myotubes. RPSE reduced glucose production in a dose-dependent manner in AML12 cells. The levels of glucose 6 phosphatase, phosphoenolpyruvate carboxykinase, and critical enzymes for hepatic gluconeogenesis were decreased by RPSE. Gluconeogenesis regulating proteins, Akt and forkhead box protein O1, were also activated by RPSE. In addition, RPSE increased glucose uptake in C2C12 via inducing translocation of glucose transporter type 4 from cytosol to plasma membrane. Analysis of the insulin-dependent pathway showed that the activities of insulin receptor substrate 1, phosphatidylinositol 3-kinase, and Akt were significantly stimulated by RPSE. In conclusion, RPSE might improve glucose homeostasis by reducing hepatic gluconeogenesis and increasing peripheral glucose uptake. Results obtained also suggest that RPSE can be a compelling antidiabetic nutraceutical.


Assuntos
Capsicum/química , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sementes/química , Transdução de Sinais/efeitos dos fármacos
15.
Front Immunol ; 9: 696, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731750

RESUMO

Obesity-induced chronic low-grade inflammation, in particular in adipose tissue, contributes to the development of insulin resistance and type 2 diabetes. However, the mechanism by which obesity induces adipose tissue inflammation has not been completely elucidated. Recent studies suggest that alteration of the nuclear lamina is associated with age-associated chronic inflammation in humans and fly. These findings led us to investigate whether the nuclear lamina regulates obesity-mediated chronic inflammation. In this study, we show that lamin A/C mediates inflammation in macrophages. The gene and protein expression levels of lamin A/C are significantly increased in epididymal adipose tissues from obese rodent models and omental fat from obese human subjects compared to their lean controls. Flow cytometry and gene expression analyses reveal that the protein and gene expression levels of lamin A/C are increased in adipose tissue macrophages (ATMs) by obesity. We further show that ectopic overexpression of lamin A/C in macrophages spontaneously activates NF-κB, and increases the gene expression levels of proinflammatory genes, such as Il6, Tnf, Ccl2, and Nos2. Conversely, deletion of lamin A/C in macrophages reduces LPS-induced expression of these proinflammatory genes. Importantly, we find that myeloid cell-specific lamin A/C deficiency ameliorates obesity-induced insulin resistance and adipose tissue inflammation. Thus, our data suggest that lamin A/C mediates the activation of ATM inflammation by regulating NF-κB, thereby contributing to the development of obesity-induced insulin resistance.


Assuntos
Tecido Adiposo Branco/metabolismo , Resistência à Insulina , Lamina Tipo A/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Animais , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Inflamação/metabolismo , Lamina Tipo A/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo
16.
Biochem Biophys Res Commun ; 496(3): 826-833, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29378184

RESUMO

Breast cancer is the most frequently diagnosed life-threatening cancer in women. Triple-negative breast cancer (TNBC) has an aggressive clinical behavior, but the treatment of TNBC remains challenging. MicroRNAs (miRNAs) have emerged as a potential target for the diagnosis, therapy and prognosis of breast cancer. However, the precise role of miRNAs and their targets in breast cancer remain to be elucidated. Here we show that miR-218 is downregulated and miR-129 is upregulated in TNBC samples and their expressions confer prognosis to patients. Gain-of-function and loss-of-function analysis reveals that miR-218 has a tumor suppressive activity, while miR-129 acts as an oncomir in breast cancer. Notably, miR-218 and miR-129 directly target Lamin B1 and Lamin A, respectively, which are also found to be deregulated in human breast tumors. Finally, we demonstrate Lamins as the major factors in reliable miR-218 and miR-129 functions for breast cancer progression. Our findings uncover a new miRNA-mediated regulatory network for different Lamins and provide a potential therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Laminas/metabolismo , MicroRNAs/metabolismo , Proliferação de Células , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia
17.
EMBO J ; 37(1): 19-38, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29150432

RESUMO

The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene-induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site-specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF-receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus-selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock-in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN-ß production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1-mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.


Assuntos
Imunidade Inata/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
18.
Diabetes ; 66(2): 392-406, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28108608

RESUMO

Obesity causes dramatic proinflammatory changes in the adipose tissue immune environment, but relatively little is known regarding how this inflammation responds to weight loss (WL). To understand the mechanisms by which meta-inflammation resolves during WL, we examined adipose tissue leukocytes in mice after withdrawal of a high-fat diet. After 8 weeks of WL, mice achieved similar weights and glucose tolerance values as age-matched lean controls but showed abnormal insulin tolerance. Despite fat mass normalization, total and CD11c+ adipose tissue macrophage (ATM) content remained elevated in WL mice for up to 6 months and was associated with persistent fibrosis in adipose tissue. ATMs in formerly obese mice demonstrated a proinflammatory profile, including elevated expression of interferon-γ, tumor necrosis factor-α, and interleukin-1ß. T-cell-deficient Rag1-/- mice showed a degree of ATM persistence similar to that in WT mice, but with reduced inflammatory gene expression. ATM proliferation was identified as the predominant mechanism by which ATMs are retained in adipose tissue with WL. Our study suggests that WL does not completely resolve obesity-induced ATM activation, which may contribute to the persistent adipose tissue damage and reduced insulin sensitivity observed in formerly obese mice.


Assuntos
Tecido Adiposo/imunologia , Proliferação de Células , Macrófagos/imunologia , Obesidade/imunologia , Redução de Peso/imunologia , Tecido Adiposo/citologia , Animais , Peso Corporal , Dieta Hiperlipídica , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Teste de Tolerância a Glucose , Proteínas de Homeodomínio/genética , Immunoblotting , Imuno-Histoquímica , Inflamação/imunologia , Insulina/metabolismo , Interferon gama/imunologia , Interleucina-1beta/imunologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Linfócitos T , Fator de Necrose Tumoral alfa/imunologia
19.
J Immunol ; 197(9): 3650-3661, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27683748

RESUMO

Dynamic changes of adipose tissue leukocytes, including adipose tissue macrophage (ATM) and adipose tissue dendritic cells (ATDCs), contribute to obesity-induced inflammation and metabolic disease. However, clear discrimination between ATDC and ATM in adipose tissue has limited progress in the field of immunometabolism. In this study, we use CD64 to distinguish ATM and ATDC, and investigated the temporal and functional changes in these myeloid populations during obesity. Flow cytometry and immunostaining demonstrated that the definition of ATM as F4/80+CD11b+ cells overlaps with other leukocytes and that CD45+CD64+ is specific for ATM. The expression of core dendritic cell genes was enriched in CD11c+CD64- cells (ATDC), whereas core macrophage genes were enriched in CD45+CD64+ cells (ATM). CD11c+CD64- ATDCs expressed MHC class II and costimulatory receptors, and had similar capacity to stimulate CD4+ T cell proliferation as ATMs. ATDCs were predominantly CD11b+ conventional dendritic cells and made up the bulk of CD11c+ cells in adipose tissue with moderate high-fat diet exposure. Mixed chimeric experiments with Ccr2-/- mice demonstrated that high-fat diet-induced ATM accumulation from monocytes was dependent on CCR2, whereas ATDC accumulation was less CCR2 dependent. ATDC accumulation during obesity was attenuated in Ccr7-/- mice and was associated with decreased adipose tissue inflammation and insulin resistance. CD45+CD64+ ATM and CD45+CD64-CD11c+ ATDCs were identified in human obese adipose tissue and ATDCs were increased in s.c. adipose tissue compared with omental adipose tissue. These results support a revised strategy for unambiguous delineation of ATM and ATDC, and suggest that ATDCs are independent contributors to adipose tissue inflammation during obesity.


Assuntos
Tecido Adiposo/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Animais , Células Cultivadas , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2/genética , Receptores CCR7/genética , Receptores de IgG/metabolismo
20.
J Leukoc Biol ; 99(6): 1107-19, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26658005

RESUMO

Obesity activates both innate and adaptive immune responses in adipose tissue, but the mechanisms critical for regulating these responses remain unknown. CD40/CD40L signaling provides bidirectional costimulatory signals between antigen-presenting cells and CD4(+) T cells, and CD40L expression is increased in obese humans. Therefore, we examined the contribution of CD40 to the progression of obesity-induced inflammation in mice. CD40 was highly expressed on adipose tissue macrophages in mice, and CD40/CD40L signaling promoted the expression of antigen-presenting cell markers in adipose tissue macrophages. When fed a high fat diet, Cd40-deficient mice had reduced accumulation of conventional CD4(+) T cells (Tconv: CD3(+)CD4(+)Foxp3(-)) in visceral fat compared with wild-type mice. By contrast, the number of regulatory CD4(+) T cells (Treg: CD3(+)CD4(+)Foxp3(+)) in lean and obese fat was similar between wild-type and knockout mice. Adipose tissue macrophage content and inflammatory gene expression in fat did not differ between obese wild-type and knockout mice; however, major histocompatibility complex class II and CD86 expression on adipose tissue macrophages was reduced in visceral fat from knockout mice. Similar results were observed in chimeric mice with hematopoietic Cd40-deficiency. Nonetheless, neither whole body nor hematopoietic disruption of CD40 ameliorated obesity-induced insulin resistance in mice. In human adipose tissue, CD40 expression was positively correlated with CD80 and CD86 expression in obese patients with type 2 diabetes. These findings indicate that CD40 signaling in adipose tissue macrophages regulates major histocompatibility complex class II and CD86 expression to control the expansion of CD4(+) T cells; however, this is largely dispensable for the development of obesity-induced inflammation and insulin resistance in mice.


Assuntos
Tecido Adiposo/patologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD40/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/metabolismo , Obesidade/imunologia , Adiposidade/efeitos dos fármacos , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Ligante de CD40/metabolismo , Dieta Hiperlipídica , Hematopoese/efeitos dos fármacos , Humanos , Insulina/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/patologia , Omento/efeitos dos fármacos , Omento/metabolismo , Omento/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA