Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 98, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143079

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that causes joint swelling and inflammation and can involve the entire body. RA is characterized by the increase of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor, and the over-activation of T lymphocytes and B lymphocytes, which may lead to severe chronic inflammation of joints. However, despite numerous studies the pathogenesis and treatment of RA remain unresolved. This study investigated the use of small heterodimer partner-interacting leucine zipper protein (SMILE) overexpression to treat a mouse model of RA. SMILE is an insulin-inducible corepressor through adenosine monophosphate-activated kinase (AMPK) signaling pathway. The injection of a SMILE overexpression vector to mice with collagen induced-arthritis resulted in a milder clinical pathology and a reduced incidence of arthritis, less joint tissue damage, and lower levels of Th17 cells and plasma B cells in the spleen. Immunohistochemistry of the joint tissue showed that SMILE decreased B-cell activating factor (BAFF) receptor (BAFF-R), mTOR, and STAT3 expression but increased AMPK expression. In SMILE-overexpressing transgenic mice with collagen antibody-induced arthritis (CAIA), a decrease in the arthritis score and reductions in tissue damage, the number of B cells, and antibody production were observed. The treatment of immune cells in vitro with curcumin, a known SMILE-inducing agent, led to decreases in plasma B cells, germinal center B cells, IL-17-producing B cells, and BAFF-R-positive B cells. Taken together, our findings demonstrate the therapeutic potential of SMILE in RA, based on its inhibition of B cell activation mediated by the AMPK/mTOR and STAT3 signaling pathway and BAFF-R expression. Video abstract.


Assuntos
Artrite Experimental , Doenças Autoimunes , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Colágeno , Inflamação , Zíper de Leucina , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
2.
PLoS One ; 18(4): e0281834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079558

RESUMO

Interleukin-1ß (IL-1ß) is one of the most potent pro-inflammatory cytokines implicated in a wide range of autoinflammatory, autoimmune, infectious, and degenerative diseases. Therefore, many researchers have focused on developing therapeutic molecules that inhibit IL-1ß-IL-1 receptor 1 (IL-1R1) interaction for the treatment of IL-1-related diseases. Among IL-1-related diseases, osteoarthritis (OA), is characterized by progressive cartilage destruction, chondrocyte inflammation, and extracellular matrix (ECM) degradation. Tannic acid (TA) has been proposed to have multiple beneficial effects, including anti-inflammatory, anti-oxidant, and anti-tumor activities. However, it is unclear whether TA plays a role in anti-IL-1ß activity by blocking IL-1ß-IL-1R1 interaction in OA. In this study, we report the anti-IL-1ß activity of TA in the progression of OA in both in vitro human OA chondrocytes and in vivo rat OA models. Herein, using-ELISA-based screening, natural compound candidates capable of inhibiting the IL-1ß-IL-1R1 interaction were identified. Among selected candidates, TA showed hindering IL-1ß-IL-1R1 interaction by direct binding to IL-1ß using surface plasmon resonance (SPR) assay. In addition, TA inhibited IL-1ß bioactivity in HEK-Blue IL-1-dependent reporter cell line. TA also inhibited IL-1ß-induced expression of inducible nitric oxide synthase (NOS2), cyclooxygenase-2 (COX-2), IL-6, tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and prostaglandin E2 (PGE2) in human OA chondrocytes. Moreover, TA downregulated IL-1ß-stimulated matrix metalloproteinase (MMP)3, MMP13, ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)4, and ADAMTS5, while upregulating collagen type II (COL2A1) and aggrecan (ACAN). Mechanistically, we confirmed that TA suppressed IL-1ß-induced MAPK and NF-κB activation. The protective effects of TA were also observed in a monosodium iodoacetamide (MIA)-induced rat OA model by reducing pain and cartilage degradation and inhibiting IL-1ß-mediated inflammation. Collectively, our results provide evidence that TA plays a potential role in OA and IL-1ß-related diseases by hindering IL-1ß-IL-1R1 interaction and suppressing IL-1ß bioactivity.


Assuntos
Anti-Inflamatórios , Osteoartrite , Ratos , Humanos , Animais , Interleucina-1beta/metabolismo , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Inflamação/patologia , Cartilagem/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Condrócitos/metabolismo , Taninos/farmacologia , Taninos/metabolismo , Células Cultivadas
3.
Lab Anim Res ; 39(1): 5, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890604

RESUMO

BACKGROUND: Orthotopic liver transplantation is the only option for patients with end-stage liver disease and hepatocellular carcinoma. Post-transplant immunosuppressive therapy is important to prevent graft failure. We investigated the effectiveness of tacrolimus (FK506) and their mechanisms for liver transplant immune tolerance in an outbred rat LT model. RESULTS: To investigate the therapeutic effect of the FK506 on outbred rat LT model, FK506 and postoperative therapy were administered subcutaneously once or twice daily to transplanted rats. Histopathological and immunohistochemical analyses were conducted for all groups. The regulation of inflammatory cytokine signaling in the spleen was analyzed by flow cytometry. FK506 attenuated allograft rejection and increased survival in rat orthotopic liver transplantation models. The FK506-treated group had reduced serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. Furthermore, FK506 decreased the expression of inflammatory cytokines and the activation of pathogenic Th1 and Th17 cells in the liver. CONCLUSIONS: Taken together, we revealed that FK506 ameliorated strong allograft rejection in outbred liver transplantation model by anti-inflammatory effect and inhibitory peroperty of pathogenic T cells.

4.
Gut Microbes ; 14(1): 2102885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951731

RESUMO

ABBREVIATIONS: LT, liver transplantation; HCC, hepatocellular carcinoma; IS, immunosuppressants; DC, dendritic cells; Treg, regulatory T; Th17, T helper 17; AST, aspartate transaminase; ALT, alanine transaminase; OUT, operational taxonomic unit; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; IL, interleukin; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; IP-10, interferon γ-induced protein; MCP-1, monocyte chemoattractant protein-1; ACR, acute cellular rejection; NF-κB, nuclear factor κB; PT INR, prothrombin time; QC, quality check; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Transplante de Fígado , Citocinas , Faecalibacterium/metabolismo , Homeostase , Humanos , Leucócitos Mononucleares/metabolismo , NF-kappa B , Fator de Necrose Tumoral alfa/metabolismo
5.
J Transl Med ; 20(1): 85, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148758

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a progressive systemic autoimmune disease that is characterized by infiltration of inflammatory cells into the hyperplastic synovial tissue, resulting in subsequent destruction of adjacent articular cartilage and bone. Methotrexate (MTX), the first conventional disease-modifying antirheumatic drug (DMARD), could alleviate articular damage in RA and is implicated in humoral and cellular immune responses. However, MTX has several side effects, so efficient delivery of low-dose MTX is important. METHODS: To investigate the efficacy of MTX-loaded nanoparticles (MTX-NPs) against experimental model of RA, free MTX or MTX-NPs were administered as subcutaneous route to mice with collagen-induced arthritis (CIA) at 3 weeks after CII immunization. The levels of inflammatory factors in tissues were determined by immunohistochemistry, confocal microscopy, real-time PCR, and flow cytometry. RESULTS: MTX-NPs ameliorated arthritic severity and joint destruction in collagen-induced arthritis (CIA) mice compared to free MTX-treated CIA mice. The levels of inflammatory cytokines, including interleukin (IL)-1ß, tumor necrosis factor-α, and vascular endothelial growth factor, were reduced in MTX-NPs-treated mice. Number of CD4 + IL-17 + cells decreased whereas the number of CD4 + CD25 + Foxp3 + cells increased in spleens from MTX- NPs-treated CIA mice compared to MTX-treated CIA mice. The frequency of CD19 + CD25 + Foxp3 + regulatory B cells increased in ex vivo splenocytes from MTX-loaded NPs-treated CIA mice compared to MTX-treated CIA mice. CONCLUSION: The results suggest that MTX-loaded NPs have therapeutic potential for RA.


Assuntos
Artrite Experimental , Doenças Autoimunes , Nanopartículas , Animais , Artrite Experimental/patologia , Interleucina-17 , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Camundongos , Linfócitos T Reguladores , Fator A de Crescimento do Endotélio Vascular
6.
Front Immunol ; 12: 652709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211461

RESUMO

Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. We investigated the mechanism by which SMILE suppressed the development of inflammatory bowel disease (IBD) using a DSS-induced colitis mouse model and peripheral blood mononuclear cells (PBMCs) from patients with ulcerative colitis (UC). Metformin, an antidiabetic drug and an inducer of AMPK, upregulated the level of SMILE in human intestinal epithelial cells and the number of SMILE-expressing cells in colon tissues from DSS-induced colitis mice compared to control mice. Overexpression of SMILE using a DNA vector reduced the severity of DSS-induced colitis and colitis-associated intestinal fibrosis compared to mock vector. Furthermore, SMILE transgenic mice showed ameliorated DSS-induced colitis compared with wild-type mice. The mRNA levels of SMILE and Foxp3 were downregulated and SMILE expression was positively correlated with Foxp3 in PBMCs from patients with UC and an inflamed mucosa. Metformin increased the levels of SMILE, AMPK, and Foxp3 but decreased the number of interleukin (IL)-17-producing T cells among PBMCs from patients with UC. These data suggest that SMILE exerts a therapeutic effect on IBD by modulating IL-17 production.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Zíper de Leucina/genética , Metformina/farmacologia , Multimerização Proteica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica
7.
Sci Rep ; 8(1): 13832, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218055

RESUMO

Osteoarthritis (OA) is a major degenerative joint condition that causes articular cartilage destruction. It was recently found that enhancement of chondroclasts and suppression in Treg cell differentiation are involved in the pathogenesis of OA. Kartogenin (KGN) is a small drug-like molecule that induces chondrogenesis in mesenchymal stem cells (MSCs). This study aimed to identify whether KGN can enhance severe pain behavior and improve cartilage repair in OA rat model. Induction of OA model was loaded by IA-injection of MIA. In the OA rat model, treatment an intra-articular injection of KGN. Pain levels were evaluated by analyzing PWL and PWT response in animals. Histological analysis and micro-CT images of femurs were used to analyze cartilage destruction. Gene expression was measured by real-time PCR. Immunohistochemistry was analyzed to detect protein expression. KGN injection significantly decreased pain severity and joint destruction in the MIA-induced OA model. KGN also increased mRNA levels of the anti-inflammatory cytokine IL-10 in OA patients' chondrocytes stimulated by IL-1ß. Decreased chondroclast expression, and increased Treg cell expression. KGN revealed therapeutic activity with the potential to reduce pain and improve cartilage destruction. Thus, KGN could be a therapeutic molecule for OA that inhibits cartilage damage.


Assuntos
Anilidas/farmacologia , Condrócitos/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Ácidos Ftálicos/farmacologia , Anilidas/metabolismo , Animais , Cartilagem/efeitos dos fármacos , Cartilagem Articular/patologia , Celecoxib/farmacologia , Condrócitos/metabolismo , Condrogênese , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Injeções Intra-Articulares , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Osteoartrite/patologia , Dor/tratamento farmacológico , Manejo da Dor/métodos , Ácidos Ftálicos/metabolismo , Ratos , Ratos Wistar
8.
Immunol Lett ; 198: 44-51, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29608924

RESUMO

A20 is a zinc finger protein that effectively inhibits the activation of nuclear factor (NF)-κB to downregulate the expression of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-17. A20 also plays a crucial role as a feedback inhibitor of the inflammatory response. Due to its inhibitory role, A20 may be useful in regulating diseases resulting from chronic inflammation and excessive pro-inflammatory cytokine production, such as colitis. Patients with colitis produce high levels of pro-inflammatory cytokines in the intestine. Therefore, this study aimed to investigate whether A20 improves experimental colitis by reducing high levels of inflammation in the intestine. An A20 overexpression vector was administered to mice by intrarectal injection after colitis induction. Histological analysis by immunohistochemistry was used to score sections of the intestine. Confocal laser scanning microscopy was used to identify the expression of IL-17 and forkhead box p (FOXP) 3 protein in spleen tissues. Protein expression induced by STAT3 and NF-κB signaling was analyzed by western blot. We found that A20 reduced the colitis activity index score and the histological score of the intestine. A20 also decreased inflammatory cytokine levels in the intestine and increased colon length. Additionally, A20 overexpression downregulated the activation of NF-kB and STAT3. A20 also reduced IL-17 expression in CD4+ T cells from spleen sections. In contrast, A20 overexpression enhanced the expression of FOXP3 in CD4+ T cells. These results suggest that A20 may inhibit the progression of colitis by decreasing inflammation via inhibition of NF-κB, phosphorylated STAT3, and IL-17.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Intestinos/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais , Baço/citologia , Células Th17/citologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
9.
Front Immunol ; 9: 2881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619261

RESUMO

Osteoarthritis (OA) is a degenerative disease that induces pain, cartilage deformation, and joint inflammation. Mesenchymal stem cells (MSCs) are potential therapeutic agents for treatment of OA. However, MSC therapy can cause excessive inflammation. Signal transducer and activator of transcription 3 (STAT3) modulates secretion of many proinflammatory cytokines. Experimental OA was induced by intra-articular (IA) injection of monosodium iodoacetate (MIA) to the right knee of rats. MSCs from OA patients (OA-MSCs) were treated with STA21, a small molecule that blocks STAT3 signaling, by IA or intravenous (IV) injection after MIA injection. Pain severity was quantified by assessment of secondary tactile allodynia using the von Frey assessment test. Cartilage degradation was measured by microcomputed tomography image analysis, histological analysis, and the Mankin score. Protein and gene expression was evaluated by enzyme-linked immunosorbent assay, immunohistochemistry, and real-time polymerase chain reaction. MSCs increased production of proinflammatory cytokines under inflammatory conditions. STA21 significantly decreased expression of these proinflammatory molecules via inhibition of STAT3 activity but increased gene expression of molecules related to migration potential and immunomodulation in OA-MSCs. STAT3-inhibited OA-MSCs administrated by IV or IA injection decreased pain severity and cartilage damage in rats with MIA-induced OA rats by decreasing proinflammatory cytokines in the joints. Combined IA and IV-injected STAT3-inhibited OA-MSCs had an additive effect of pain relief in MIA-induced OA rats. STAT3 inhibition may optimize the therapeutic activities of MSCs for treating OA by attenuating pain and progression of MIA by inhibiting inflammation and cartilage damage.


Assuntos
Artrite Experimental/metabolismo , Cartilagem Articular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Fator de Transcrição STAT3/metabolismo , Administração Intravenosa , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/terapia , Cartilagem Articular/patologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Xenoenxertos , Humanos , Injeções Intra-Articulares , Ácido Iodoacético , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoartrite/induzido quimicamente , Osteoartrite/terapia , Dor/fisiopatologia , Dor/prevenção & controle , Ratos Wistar , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA