Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biochem Biophys Res Commun ; 696: 149517, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219487

RESUMO

Emerging evidence indicates that the immunomodulatory effect of mesenchymal stem cells (MSCs) is primarily attributed to the paracrine pathway. As a key paracrine effector, MSC-derived exosomes are small vesicles that play an important role in cell-to-cell communication by carrying bioactive substances. We previously found that exosomes derived from tonsil-derived mesenchymal stem cells (T-MSCs) were able to effectively attenuate inflammatory responses in mast cells. Here we investigated how T-MSC exosomes impact mast cells in steady state, and how exposure of T-MSCs to Toll-like receptors (TLRs) ligands changes this impact. Transcriptomic analysis of HMC-1 cells, a human mast cell line, using DNA microarrays showed that T-MSC exosomes broadly regulate genes involved in the normal physiology of mast cells. TLR3 or TLR4 primed T-MSC exosomes impacted fewer genes involved in specific functions in mast cells. This distinguishable regulation also was apparent in the analysis of related gene interactions. Our results suggest that MSC exosomes maintain immune homeostasis in normal physiology and impact the inflammatory state by modulating mast cell transcription.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Mastócitos , Exossomos/genética , Exossomos/metabolismo , Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Expressão Gênica
2.
Cell J ; 25(9): 660-664, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37718769

RESUMO

One of the most affected aspects of the aging process is immunity, with age-related immune system decline being responsible for an increase in susceptibility to infectious diseases and cancer risk. On the other hand, the aging process is accompanied with low-grade pro-inflammatory status. This condition involves a persistent rise in cytokine levels that can activate both innate and adaptive immune systems. Finally, despite the fact that immunological responses to antigenic stimulations decrease with age, the incidence and prevalence of many common autoimmune diseases increase in the elderly population. Overall, the co-existence of a prolonged, low-grade inflammatory status and declining immune activity appears to be a paradoxical phenomenon. This study characterized skin inflammation in mouse dermatitis model of various ages to monitor possible changes of inflammatory responses during aging.

3.
Tissue Eng Regen Med ; 20(2): 271-284, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36462090

RESUMO

BACKGROUND: To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS: To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS: Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION: These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.


Assuntos
Células-Tronco Mesenquimais , Tonsila Palatina , Células da Medula Óssea , Meios de Cultivo Condicionados/farmacologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Humanos
4.
PLoS One ; 17(6): e0266857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35648740

RESUMO

Obesity, which has become a major global health problem, involves a constitutive increase in adipocyte differentiation signaling. Previous studies show that mesenchymal stem cells (MSCs) induce weight loss and glycemic control. However, the mechanisms by which MSCs regulate adipocyte differentiation are not yet known. In this study, we investigated the effects of conditioned medium obtained from human tonsil-derived MSCs (T-MSC CM) on adipocyte differentiation. We found that T-MSC CM attenuated adipocyte differentiation from early stages via inhibiting glucocorticoid signaling. T-MSC CM also increased the phosphorylation of p38 mitogen-activated protein kinase and glucocorticoid receptors and decreased the subsequent nucleus translocation of glucocorticoid receptors. Chronic treatment of mice with synthetic glucocorticoids induced visceral and bone marrow adipose tissue expansion, but these effects were not observed in mice injected with T-MSC CM. Furthermore, T-MSC CM injection protected against reductions in blood platelet counts induced by chronic glucocorticoid treatment, and enhanced megakaryocyte differentiation was also observed. Collectively, these results demonstrate that T-MSC CM exerts inhibitory effects on adipocyte differentiation by regulating glucocorticoid signal transduction. These findings suggest that the therapeutic application of T-MSC CM could reduce obesity by preventing adipose tissue expansion.


Assuntos
Glucocorticoides , Células-Tronco Mesenquimais , Adipócitos/metabolismo , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Camundongos , Obesidade/metabolismo , Tonsila Palatina , Receptores de Glucocorticoides/metabolismo
5.
Tissue Eng Regen Med ; 19(1): 131-139, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013919

RESUMO

BACKGROUND: Therapeutic strategies that can promote platelet production are in demand to enhance clinical outcomes of bone marrow transplantation (BMT). Our research group has studied human tonsil-derived mesenchymal stem cells (T-MSCs) and their effectiveness in promoting bone marrow (BM) engraftment. Here, we analyzed the effects of T-MSCs on platelet production and hemostasis. METHODS: Donor BM cells (BMCs) were isolated from C57BL/6 mice and transplanted with or without T-MSCs to BALB/c recipient mice. Mice were sacrificed and blood cells were counted using an Auto Hematology Analyzer. Femur sections were stained with CD41 antibody to analyze megakaryocytes in the BM. Growth factor secretion from MSCs was analyzed using the Quantibody Array. Effects of T-MSC conditioned medium (CM) on megakaryopoiesis were investigated using the MegaCult assay. In a mouse model of BMT, T-MSC CM was injected with or without anti-placental growth factor (α-PlGF) blocking antibody, and blood cell numbers and coagulation were analyzed. RESULTS: T-MSC co-transplantation increased percent survival of BMT mice. Platelet numbers were significantly lower in the BMC-only group, whereas T-MSC co-transplantation restored circulating platelets to levels similar to those of the control group. Significantly reduced numbers of CD41 + megakaryocytes in Bu-Cy and BMC groups were increased by T-MSC co-transplantation. PlGF secretion from T-MSCs were detected and enhanced megakaryopoiesis, platelet production, and coagulation by T-MCS CM were disrupted in the presence of the α-PlGF blocking antibody. CONCLUSION: We demonstrated the effectiveness of T-MSC co-transplantation in promoting platelet production and coagulation after BMT. These findings highlight the potential therapeutic relevance of T-MSCs for preventing thrombocytopenia after BMT.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea , Transplante de Medula Óssea , Camundongos , Camundongos Endogâmicos C57BL
6.
Tissue Eng Regen Med ; 19(1): 117-129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34792754

RESUMO

BACKGROUND: Mast cells are immune sentinels in the skin that respond to a wide range of pathological and environmental stimuli; they owe their function to the expression of Toll-like receptors (TLRs). We previously found that tonsil-derived mesenchymal stem cells (T-MSCs) were able to effectively attenuate TLR7-mediated skin inflammation in mice, which was accompanied by an increase in mast cell number. The present study investigated whether T-MSC extracellular vesicles, such as exosomes, are able to regulate mast cell activation in response to TLR7 stimulation. METHODS: The HMC-1 human mast cell line was treated with a TLR7 agonist in the presence or absence of T-MSC exosomes, and the levels of expressed inflammatory cytokines were assessed. Additionally, mice were repeatedly injected with a TLR7 agonist with or without interval treatments with T-MSC exosomes and assessed dermal distribution of mast cells and related immune cells. RESULTS: We showed that T-MSC exosomes containing microRNAs that target inflammatory cytokines significantly reduced the expression of inflammatory cytokines in TLR7 agonist-treated HMC-1 cells. In addition, T-MSC exosomes inhibited the increase in the number of both dermal mast cells and CD14-positive cells in TLR7 agonist-treated mice. CONCLUSION: Our data suggest that T-MSC exosomes have regulatory effects on mast cell activation under inflammatory conditions, including TLR7 stimulation.


Assuntos
Exossomos , Glicoproteínas de Membrana/imunologia , Células-Tronco Mesenquimais , MicroRNAs , Receptor 7 Toll-Like/imunologia , Animais , Exossomos/metabolismo , Mastócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor 7 Toll-Like/metabolismo
7.
Sci Rep ; 11(1): 19589, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599237

RESUMO

Tonsil-derived mesenchymal stem cells (TMSCs) showed therapeutic effects on acute and chronic murine colitis models, owing to their immunomodulatory properties; therefore, we evaluated enhanced therapeutic effects of TMSCs on a murine colitis model using three-dimensional (3D) culture method. The expression of angiogenic factors, VEGF, and anti-inflammatory cytokines, IL-10, TSG-6, TGF-ß, and IDO-1, was significantly higher in the 3D-TMSC-treated group than in the 2D-TMSC-treated group (P < 0.05). At days 18 and 30 after inducing chronic colitis, disease activity index scores were estimated to be significantly lower in the 3D-TMSC-treated group than in the colitis control (P < 0.001 and P < 0.001, respectively) and 2D-TMSC-treated groups (P = 0.022 and P = 0.004, respectively). Body weight loss was significantly lower in the 3D-TMSC-treated group than in the colitis control (P < 0.001) and 2D-TMSC-treated groups (P = 0.005). Colon length shortening was significantly recovered in the 3D-TMSC-treated group compared to that in the 2D-TMSC-treated group (P = 0.001). Histological scoring index was significantly lower in the 3D-TMSC-treated group than in the 2D-TMSC-treated group (P = 0.002). These results indicate that 3D-cultured TMSCs showed considerably higher therapeutic effects in a chronic murine colitis model than those of 2D-cultured TMSCs via increased anti-inflammatory cytokine expression.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Colite/terapia , Transplante de Células-Tronco Mesenquimais , Tonsila Palatina/citologia , Animais , Criança , Colite/induzido quimicamente , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Células HEK293 , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL
8.
Int J Mol Med ; 48(6)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676871

RESUMO

Mesenchymal stem cells (MSCs) are mesoderm­originated adult SCs that possess multidirectional differentiation potential. MSCs migrate to injured tissue and secrete a range of paracrine factors that induce regeneration in damaged tissue and exert immune modulation. Because tumor progression is dependent on cross­talk between the tumor and its microenvironment, MSCs also produce extracellular vesicles (EVs) that mediate information transfer in the tumor microenvironment. However, the effect of MSC­derived EVs on tumor development and progression is still controversial. To date, tonsil­derived MSCs (T­MSCs) have been shown to possess all the defined characteristics of MSCs and show distinctive features of differential potential and immune modulation. To observe the effect of soluble mediators from T­MSCs on tumor growth, human liver cancer cell line (HepG2) cells were injected into nude mice and HepG2 cell scratch migration assay was performed using conditioned medium (CM) of T­MSCs. T­MSC CM inhibited tumor growth and progression and it was hypothesized that EVs from T­MSCs could inhibit tumor progression. microRNA (miRNA or miR) sequencing using five different origins of T­MSC­derived EVs was performed and highly expressed miRNAs, such as miR­199a­3p, miR­214­3p, miR­199a­5p and miR­199b­5p, were selected. T­MSCs inhibited tumor growth and HepG2 cell migration, potentially via miR­199a­3p targeting CD151, integrin α3 and 6 in HepG2 cells.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Tonsila Palatina/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
9.
Cells ; 10(8)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440938

RESUMO

Skeletal muscle mass is decreased under a wide range of pathologic conditions. In particular, chemotherapy is well known for inducing muscle loss and atrophy. Previous studies using tonsil-derived mesenchymal stem cells (T-MSCs) or a T-MSC-conditioned medium showed effective recovery of total body weight in the chemotherapy-preconditioned bone marrow transplantation mouse model. This study investigated whether extracellular vesicles of T-MSCs, such as exosomes, are a key player in the recovery of body weight and skeletal muscle mass in chemotherapy-treated mice. T-MSC exosomes transplantation significantly decreased loss of total body weight and muscle mass in the busulfan-cyclophosphamide conditioning regimen in BALB/c recipient mice containing elevated serum activin A. Additionally, T-MSC exosomes rescued impaired C2C12 cell differentiation in the presence of activin A in vitro. We found that T-MSC exosomes possess abundant miR-145-5p, which targets activin A receptors, ACVR2A, and ACVR1B. Indeed, T-MSC exosomes rescue muscle atrophy both in vivo and in vitro via miR-145-5p dependent manner. These results suggest that T-MSC exosomes have therapeutic potential to maintain or improve skeletal muscle mass in various activin A elevated pathologic conditions.


Assuntos
Receptores de Ativinas/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
10.
Stem Cell Res Ther ; 12(1): 329, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090520

RESUMO

BACKGROUND: Co-transplantation of bone marrow cells (BMCs) and mesenchymal stem cells (MSCs) is used as a strategy to improve the outcomes of bone marrow transplantation. Tonsil-derived MSCs (TMSCs) are a promising source of MSCs for co-transplantation. Previous studies have shown that TMSCs or conditioned media from TMSCs (TMSC-CM) enhance BMC engraftment. However, the factors in TMSCs that promote better engraftment have not yet been identified. METHODS: Mice were subjected to a myeloablative regimen of busulfan and cyclophosphamide, and the mRNA expression in the bone marrow was analyzed using an extracellular matrix (ECM) and adhesion molecule-targeted polymerase chain reaction (PCR) array. Nano-liquid chromatography with tandem mass spectrometry, real-time quantitative PCR, western blots, and enzyme-linked immunosorbent assays were used to compare the expression levels of metalloproteinase 3 (MMP3) in MSCs derived from various tissues, including the tonsils, bone marrow, adipose tissue, and umbilical cord. Recipient mice were conditioned with busulfan and cyclophosphamide, and BMCs, either as a sole population or with control or MMP3-knockdown TMSCs, were co-transplanted into these mice. The effects of TMSC-expressed MMP3 were investigated. Additionally, Enzchek collagenase and Transwell migration assays were used to confirm that the collagenase activity of TMSC-expressed MMP3 enhanced BMC migration. RESULTS: Mice subjected to the myeloablative regimen exhibited increased mRNA expression of collagen type IV alpha 1/2 (Col4a1 and Col4a2). Among the various extracellular matrix-modulating proteins secreted by TMSCs, MMP3 was expressed at higher levels in TMSCs than in other MSCs. Mice co-transplanted with BMCs and control TMSCs exhibited a higher survival rate, weight recovery, and bone marrow cellularity compared with mice co-transplanted with BMCs and MMP3-knockdown TMSCs. Control TMSC-CM possessed higher collagenase activity against collagen IV than MMP3-knockdown TMSC-CM. TMSC-CM also accelerated BMC migration by degrading collagen IV in vitro. CONCLUSIONS: Collectively, these results indicate that TMSCs enhance BMC engraftment by the secretion of MMP3 for the modulation of the bone marrow extracellular matrix.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Colágeno Tipo IV , Camundongos , Tonsila Palatina
11.
PLoS One ; 15(11): e0242057, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175885

RESUMO

Exosomes are a group of small membranous vesicles that are shed into the extracellular environment by tumoral or non-tumoral cells and contribute to cellular communication by delivering micro RNAs (miRNAs). In this study, we aimed to evaluate the role of exosomal miRNAs from colorectal cancer cell lines in tumorigenesis, by affecting cancer-associated fibroblasts (CAFs), which are vital constituents of the tumor microenvironment. To analyze the effect of exosomal miRNA on the tumor microenvironment, migration of the monocytic cell line THP-1 was evaluated via Transwell migration assay using CAFs isolated from colon cancer patients. The migration assay was performed with CAFs ± CCL7-blocking antibody and CAFs that were treated with exosomes isolated from colon cancer cell lines. To identify the associated exosomal miRNAs, miRNA sequencing and quantitative reverse transcription polymerase chain reaction were performed. The migration assay revealed that THP-1 migration was decreased in CCL7-blocking antibody-expressing and exosome-treated CAFs. Colon cancer cell lines contained miRNA let-7d in secreted exosomes targeting the chemokine CCL7. Exosomes from colorectal cancer cell lines affected CCL7 secretion from CAFs, possibly via the miRNA let-7d, and interfered with the migration of CCR2+ monocytic THP-1 cells in vitro.


Assuntos
Neoplasias Colorretais/genética , Exossomos/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Células Jurkat , Análise de Sequência de RNA , Células THP-1 , Microambiente Tumoral
12.
Int J Mol Med ; 46(3): 1166-1174, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32582998

RESUMO

Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre­BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self­tolerance. Delayed thymus reconstitution following pre­BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell­mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)­7, IL­22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co­transplantation of tonsil­derived mesenchymal stromal cells (T­MSCs) with BM­derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre­BMT conditioning with busulfan­cyclophosphamide treatment, possibly by inducing FMS­like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T­MSCs. The co­transplantation of T­MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre­BMT cytotoxic conditioning. Furthermore, T­MSC co­transplantation improved the recovery of the TCR repertoire and led to increased thymus­generated T cell diversity.


Assuntos
Transplante de Medula Óssea/métodos , Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Linfócitos T/citologia , Timo/citologia , Animais , Complexo CD3 , Feminino , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tonsila Palatina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo
13.
Cells ; 9(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952360

RESUMO

Cotransplantation of mesenchymal stem cells (MSCs) with hematopoietic stem cells (HSCs) has been widely reported to promote HSC engraftment and enhance marrow stromal regeneration. The present study aimed to define whether MSC conditioned medium could recapitulate the effects of MSC cotransplantation. Mouse bone marrow (BM) was partially ablated by the administration of a busulfan and cyclophosphamide (Bu-Cy)-conditioning regimen in BALB/c recipient mice. BM cells (BMCs) isolated from C57BL/6 mice were transplanted via tail vein with or without tonsil-derived MSC conditioned medium (T-MSC CM). Histological analysis of femurs showed increased BM cellularity when T-MSC CM or recombinant human pleiotrophin (rhPTN), a cytokine readily secreted from T-MSCs with a function in hematopoiesis, was injected with BMCs. Microstructural impairment in mesenteric and BM arteriole endothelial cells (ECs) were observed after treatment with Bu-Cy-conditioning regimen; however, T-MSC CM or rhPTN treatment restored the defects. These effects by T-MSC CM were disrupted in the presence of an anti-PTN antibody, indicating that PTN is a key mediator of EC restoration and enhanced BM engraftment. In conclusion, T-MSC CM administration enhances BM engraftment, in part by restoring vasculature via PTN production. These findings highlight the potential therapeutic relevance of T-MSC CM for increasing HSC transplantation efficacy.


Assuntos
Transplante de Medula Óssea , Proteínas de Transporte/farmacologia , Meios de Cultivo Condicionados/farmacologia , Citocinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
14.
Cells ; 8(4)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018536

RESUMO

Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder accompanied by high blood glucose, insulin resistance, and relative insulin deficiency. Endoplasmic reticulum (ER) stress induced by high glucose and free fatty acids has been suggested as one of the main causes of ß-cell dysfunction and death in T2DM. Stem cell-derived insulin-secreting cells were recently suggested as a novel therapy for diabetes. In the present study, we demonstrate the therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) to treat high-fat diet (HFD)-induced T2DM. To explore whether TMSC administration can alleviate T2DM, TMSCs were intraperitoneally injected in HFD-induced T2DM mice once every 2 weeks. TMSC injection markedly improved glucose tolerance and glucose-stimulated insulin secretion and prevented HFD-induced pancreatic ß-cell hypertrophy and cell death. In addition, TMSC injection relieved the ER-stress response and preserved gene expression related to glucose sensing and insulin secretion. Moreover, administration of TMSC-derived conditioned medium induced similar therapeutic outcomes, suggesting paracrine effects. Finally, proteomic analysis revealed high secretion of insulin-like growth factor-binding protein 5 by TMSCs, and its expression was critical for the protective effects of TMSCs against HFD-induced glucose intolerance and ER-stress response in pancreatic islets. TMSC administration can alleviate HFD-induced-T2DM via preserving pancreatic islets and their function. These results provide novel evidence of TMSCs as an ER-stress modulator that may be a novel, alternative cell therapy for T2DM.


Assuntos
Intolerância à Glucose/metabolismo , Intolerância à Glucose/terapia , Células-Tronco Mesenquimais/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Glucose/metabolismo , Intolerância à Glucose/etiologia , Humanos , Hiperglicemia/complicações , Insulina/genética , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Tonsila Palatina/metabolismo , Tonsila Palatina/fisiologia
15.
Sci Rep ; 9(1): 4615, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874581

RESUMO

Animal studies using chronic social defeat stress (CSDS) in mice showed that brain-derived neurotrophic factor (BDNF) signaling in the mesolimbic dopamine (DA) circuit is important for the development of social aversion. However, the downstream molecular targets after BDNF release from ventral tegmental area (VTA) DA terminals are unknown. Here, we show that depressive-like behaviors induced by CSDS are mediated in part by Gadd45b downstream of BDNF signaling in the nucleus accumbens (NAc). We show that Gadd45b mRNA levels are increased in susceptible but not resilient mice. Intra-NAc infusion of BDNF or optical stimulation of VTA DA terminals in NAc enhanced Gadd45b expression levels in the NAc. Importantly, Gadd45b downregulation reversed social avoidance in susceptible mice. Together, these data suggest that Gadd45b in NAc contributes to susceptibility to social stress. In addition, we investigated the function of Gadd45b in demethylating CpG islands of representative gene targets, which have been associated with a depressive phenotype in humans and animal models. We found that Gadd45b downregulation changes DNA methylation levels in a phenotype-, gene-, and locus-specific fashion. Together, these results highlight the contribution of Gadd45b and changes in DNA methylation in mediating the effects of social stress in the mesolimbic DA circuit.


Assuntos
Antígenos de Diferenciação/metabolismo , Desmetilação do DNA/efeitos dos fármacos , Depressão/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , DNA/metabolismo , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Núcleo Accumbens/metabolismo , Comportamento Social , Estresse Psicológico/fisiopatologia , Área Tegmentar Ventral/metabolismo
16.
Mol Med Rep ; 19(1): 609-616, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431127

RESUMO

Graft-vs.-host disease (GVHD) is a severe and potentially life-threatening complication of hematopoietic stem cell transplantation. Approximately 50% of patients exhibiting GVHD will not benefit from conventional steroid treatment. Although several second­line treatments are available for these patients, their prognoses remain poor due to the increased risk of infection, immunosuppression-mediated toxicity and incomplete GVHD remission, which occurs in the majority of cases. Mesenchymal stem cells (MSCs), a multipotent cell population, possess broad immunosuppressive activity and are a reportedly effective treatment of GVHD. However, the therapeutic effects of conditioned medium from MSCs on GVHD have not been demonstrated. In the present study, the efficacy of conditioned medium from human palatine tonsil­derived MSCs (T­MSC­CM) was validated against GVHD in mice. The suppressive function of T­MSC­CM on immune cell chemotaxis was confirmed in vitro. A systemic infusion of T­MSC­CM in mice with GVHD resulted in prolonged survival, rapid recovery from weight loss and reduced pathological damage in numerous GVHD­targeted organs. Furthermore, lymphocyte gene expression was significantly downregulated in GVHD mice administered T­MSC­CM. These results indicate that T­MSC­CM is a promising cellular agent to prevent or treat transplantation­associated complications such as GVHD.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Animais , Células Cultivadas , Feminino , Doença Enxerto-Hospedeiro/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
17.
Mol Med Rep ; 17(5): 6723-6730, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29532895

RESUMO

Mast cells are central regulators of allergic inflammation that function by releasing various proallergic inflammatory mediators, including histamine, eicosanoids and proinflammatory cytokines. Occasionally, bacterial infections may initiate or worsen allergic inflammation. A number of studies have indicated that activation of lipoxygenase in mast cells positive regulates allergic inflammatory responses by generating leukotrienes and proinflammatory cytokines. In the present study, the effects of benzoxazole derivatives on the lipopolysaccharide (LPS)­induced expression of proinflammatory cytokines, production of histamine and surface expression of co­stimulatory molecules on bone marrow-derived mast cells (BMMCs) were studied. The benzoxazole derivatives significantly reduced the expression of interleukin (IL)­1ß, IL­6, IL­13, tumor necrosis factor­α, perilipin (PLIN) 2, and PLIN3 in BMMCs treated with LPS. Furthermore, histamine production was suppressed in BMMCs treated with LPS, or treated with phorbol-12-myristate-13-acetate/ionomycin. Benzoxazole derivatives marginally affected the surface expression of cluster of differentiation (CD)80 and CD86 on BMMCs in the presence of LPS, although LPS alone did not increase the expression of those proteins. Therefore, benzoxazole derivatives inhibited the secretion of proinflammatory cytokines in mast cells and may be potential candidate anti­allergic agents to suppress mast cell activation.


Assuntos
Benzoxazóis/farmacologia , Células da Medula Óssea/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Mastócitos/metabolismo , Perilipina-1/metabolismo , Perilipina-3/metabolismo , Animais , Células da Medula Óssea/patologia , Feminino , Mastócitos/patologia , Camundongos
18.
J Tissue Eng Regen Med ; 12(2): e1022-e1033, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28107610

RESUMO

Our knowledge of the immunomodulatory role of mesenchymal stem cells (MSCs) in both the innate and adaptive immune systems has dramatically expanded, providing great promise for treating various autoimmune diseases. However, the contribution of MSCs to Th17-dominant immune disease, such as psoriasis and its underlying mechanism remains elusive. In this study, we demonstrated that human palatine tonsil-derived MSCs (T-MSCs) constitutively express both the membrane-bound and soluble forms of programmed death-ligand 1 (PD-L1), which enables T-MSCs to be distinguished from MSCs originating from other organs (i.e. bone marrow or adipose tissue). We also found that T-MSC-derived PD-L1 effectively represses Th17 differentiation via both cell-to-cell contact and a paracrine effect. Further, T-MSCs increase programmed death-1 (PD-1) expression on T-cells by secreting IFN-ß, which may enhance engagement with PD-L1. Finally, transplantation of T-MSCs into imiquimod-induced psoriatic skin inflammation in mice significantly abrogated disease symptoms, mainly by blunting the Th17 response in a PD-L1-dependent manner. This study suggests that T-MSCs might be a promising cell source to treat autoimmune diseases such as psoriasis, via its unique immunoregulatory features. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Autoimunidade , Antígeno B7-H1/metabolismo , Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Transdução de Sinais , Células Th17/citologia , Animais , Autoimunidade/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imiquimode/farmacologia , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/metabolismo , Linfonodos/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Psoríase/genética , Psoríase/imunologia , Psoríase/patologia , Células da Side Population/efeitos dos fármacos , Células da Side Population/metabolismo , Pele/patologia , Células Th17/efeitos dos fármacos
19.
Sci Rep ; 7(1): 17114, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29214990

RESUMO

Human mesenchymal stem cells (MSCs) are adult multipotent cells that have plasticity and inhabit the stroma of diverse tissues. The potential utility of MSCs has been heavily investigated in the fields of regenerative medicine and cell therapy. However, MSCs represent diverse populations that may depend on the tissue of origin. Thus, the ability to identify specific MSC populations has remained difficult. Using RNA sequencing, we analyzed the whole transcriptomes of bone marrow-derived MSCs (BMs), adipose tissue-derived MSCs (AMs), and tonsil-derived MSCs (TMs). We categorized highly regulated genes from these MSC groups according to functional gene ontology (GO) classification. AMs and TMs showed higher expression of genes encoding proteins that function in protein binding, growth factor, or cytokine activity in extracellular compartments than BMs. Interestingly, TM were highly enriched for genes coding extracellular, protein-binding proteins compared with AMs. Functional Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also showed differentially enriched signaling pathways between the three MSC groups. Further, we confirmed surface antigens expressed in common and in a tissue-specific manner on BMs, AMs, and TMs by flow cytometry analysis. This study provides comprehensive characteristics of MSCs derived from different tissues to better understand their cellular and molecular biology.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tonsila Palatina/citologia , Transcriptoma , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/classificação
20.
Oncotarget ; 8(48): 83419-83431, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137353

RESUMO

Th17 cells play a critical role in several autoimmune diseases, including psoriasis and psoriatic arthritis (PsA). Psoriasis is a chronic inflammatory skin disease associated with systemic inflammation and comorbidities, such as PsA. PsA develops in nearly 70% of patients with psoriasis, and osteoclasts associated bone erosion is a hallmark of the disease. Thus far, the effect of Th17 cells on osteoclastogenesis via direct cell-to-cell interactions is less understood. In this study, we observed that Th17 cells directly promote osteoclast differentiation and maturation via expression of receptor activator of nuclear factor-κ ß ligand (RANKL) in vitro. We investigated the impact of conditioned medium obtained from human palatine tonsil-derived mesenchymal stem cells (T-CM) on the interactions between osteoclasts and Th17 cells. T-CM effectively blunted the RANK-RANKL interaction between the osteoclast precursor cell line RAW 264.7 and Th17 cells via osteoprotegerin (OPG) activity. The frequency of tartrate-resistant acid phosphatase (TRAP)-positive cells in the bone marrow of an imiquimod (IMQ)-induced psoriasis mouse model was decreased following T-CM injection. Therefore, our data provide novel insight into the therapeutic potential of tonsil-derived mesenchymal stem cell-mediated therapy (via OPG production) for the treatment of pathophysiologic processes induced by osteoclasts under chronic inflammatory conditions such as psoriasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA