Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Med Sci ; 18(14): 3299-3308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400899

RESUMO

Plant tissue culture holds immense potential for the production of secondary metabolites with various physiological functions. We recently established a plant tissue culture system capable of producing secondary metabolites from Aster yomena. This study aimed to uncover the mechanisms underlying the potential therapeutic effects of Aster yomena callus pellet extract (AYC-P-E) on photoaging-induced skin pigmentation. Excessive melanogenesis was induced in B16F10 melanoma cells using α-melanocyte stimulating hormone (α-MSH). The effects of AYC-P-E treatment on melanin biosynthesis inducers and melanin synthesis inhibition were assessed. Based on the results, a clinical study was conducted in subjects with skin pigmentation. AYC-P-E inhibited melanogenesis in α-MSH-treated B16F10 cells, accompanied by decreased mRNA and protein expression of melanin biosynthesis inducers, including cyclic AMP response element-binding protein (CREB), tyrosinase, microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), and TRP-2. This anti-melanogenic effect was mediated by mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) phosphorylation. Treatment of subjects with skin pigmentation with AYC-P-E-containing cream formulations resulted in 3.33%, 7.06%, and 8.68% improvement in the melanin levels at 2, 4, and 8 weeks, respectively. Our findings suggest that AYC-P-E inhibits excessive melanogenesis by activating MEK/ERK and AKT signaling, potentiating its cosmetic applications in hyperpigmentation treatment.


Assuntos
Aster/química , Dermatoses Faciais/tratamento farmacológico , Hiperpigmentação/tratamento farmacológico , Melaninas/antagonistas & inibidores , Extratos Vegetais/farmacologia , Adulto , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Hiperpigmentação/etiologia , Hiperpigmentação/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melaninas/biossíntese , Camundongos , Pessoa de Meia-Idade , Extratos Vegetais/uso terapêutico , Envelhecimento da Pele/fisiologia , Creme para a Pele/farmacologia , Creme para a Pele/uso terapêutico , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos da radiação , Resultado do Tratamento
2.
Exp Mol Med ; 45: e19, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23598593

RESUMO

New colchicine analogs have been synthesized with the aim of developing stronger potential anticancer activities. Among the analogs, CT20126 has been previously reported to show immunosuppressive activities. Here, we report that CT20126 also shows potential anticancer effects via an unusual mechanism: the modulation of microtubule integrity and cell cycle arrest at the G2/M phase before apoptosis. When we treated COS-7 cells with CT20126 (5 µM), the normal thread-like microtubules were disrupted into tubulin dimers within 10 min and thereafter repolymerized into short, thick filaments. In contrast, cells treated with the same concentration of colchicine exhibited microtubule depolymerization after 20 min and never underwent repolymerization. Furthermore, optical density (OD) analysis (350 nm) with purified tubulin showed that CT20126 had a higher repolymerizing activity than that of Taxol, a potent microtubule-polymerizing agent. These results suggest that the effects of CT20126 on microtubule integrity differ from those of colchicine: the analog first destabilizes microtubules and then stabilizes the disrupted tubulins into short, thick polymers. Furthermore, CT20126 induced a greater level of apoptotic activity in Jurkat T cells than colchicine (assessed by G2/M arrest, caspase-3 activation and cell sorting). At 20 nM, CT20126 induced 47% apoptosis among Jurkat T cells, whereas colchicine induced only 33% apoptosis. Our results suggest that the colchicine analog CT20126 can potently induce apoptosis by disrupting microtubule integrity in a manner that differs from that of colchicine or Taxol.


Assuntos
Apoptose/efeitos dos fármacos , Colchicina/análogos & derivados , Microtúbulos/metabolismo , Moduladores de Tubulina/farmacologia , Acetilação/efeitos dos fármacos , Animais , Células COS , Caspase 3/metabolismo , Bovinos , Divisão Celular/efeitos dos fármacos , Chlorocebus aethiops , Colchicina/química , Colchicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Células Jurkat , Poli(ADP-Ribose) Polimerases/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
3.
J Neurosci Methods ; 161(2): 199-204, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17157386

RESUMO

Neurofilaments (NFs) are heteropolymers composed of light (NF-L), middle (NF-M), and heavy (NF-H) subunits, present in most neurons. NF-L polymerizes on its own to provide a scaffold on which regular NFs form via the cross-bridging of NF-M or NF-H. To clarify the mechanism of regulation of NF-L self-assembly, we developed an assay using truncated mutant NF-L fused to glutathione-S transferase (GST). Western immunoblotting data show that the GST-fused head-rod domains of NF-L are necessary and sufficient for detecting assembled NF-L. The levels of self-assembled NF-L subunits detected using GST fusion proteins were consistent with those detected by electron microscopy and turbidity assay. Our results collectively imply that GST-fused head-rod domains of NF-L are critical tools for analyzing NF-L self-assembly in vitro.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/ultraestrutura , Western Blotting/métodos , Proteínas de Neurofilamentos/metabolismo , Proteínas de Neurofilamentos/ultraestrutura , Animais , Linhagem Celular Tumoral , Humanos , Mutagênese Sítio-Dirigida , Células PC12 , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA