Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 6(5): 847-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38811804

RESUMO

Adipose tissues serve as an energy reservoir and endocrine organ, yet the mechanisms that coordinate these functions remain elusive. Here, we show that the transcriptional coregulators, YAP and TAZ, uncouple fat mass from leptin levels and regulate adipocyte plasticity to maintain metabolic homeostasis. Activating YAP/TAZ signalling in adipocytes by deletion of the upstream regulators Lats1 and Lats2 results in a profound reduction in fat mass by converting mature adipocytes into delipidated progenitor-like cells, but does not cause lipodystrophy-related metabolic dysfunction, due to a paradoxical increase in circulating leptin levels. Mechanistically, we demonstrate that YAP/TAZ-TEAD signalling upregulates leptin expression by directly binding to an upstream enhancer site of the leptin gene. We further show that YAP/TAZ activity is associated with, and functionally required for, leptin regulation during fasting and refeeding. These results suggest that adipocyte Hippo-YAP/TAZ signalling constitutes a nexus for coordinating adipose tissue lipid storage capacity and systemic energy balance through the regulation of adipocyte plasticity and leptin gene transcription.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adipócitos , Tecido Adiposo , Metabolismo Energético , Via de Sinalização Hippo , Leptina , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Leptina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Sinalização YAP/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Transativadores/metabolismo , Transativadores/genética
2.
Mar Drugs ; 22(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535478

RESUMO

We demonstrated the effect of Ishige okamurae extract (IOE) on the receptor activator of nuclear factor-κB ligand (RANKL)-promoted osteoclastogenesis in RAW 264.7 cells and confirmed that IOE inhibited RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity and osteoclast differentiation. IOE inhibited protein expression of TRAP, metallopeptidase-9 (MMP-9), the calcitonin receptor (CTR), and cathepsin K (CTK). IOE treatment suppressed the expression of activated T cell cytoplasmic 1 and activator protein-1, thus controlling the expression of osteoclast-related factors. Moreover, IOE significantly reduced RANKL-phosphorylated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). It also reduced the RANKL-induced phosphorylation of NF-κB and nuclear translocation of p65. IOE inhibited Dex-induced bone loss and osteoclast-related gene expression in zebrafish larvae. HPLC analysis shows that IOE consists of 3.13% and 3.42% DPHC and IPA, respectively. Our results show that IOE has inhibitory effects on osteoclastogenesis in vitro and in vivo and is a potential therapeutic for osteoporosis.


Assuntos
Osteogênese , Peixe-Zebra , Animais , Osteoclastos , Cromatografia Líquida de Alta Pressão , MAP Quinases Reguladas por Sinal Extracelular , Ligante RANK
3.
Medicina (Kaunas) ; 59(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37629725

RESUMO

Aim and Objectives: Direct-acting antiviral (DAA) therapy can cure chronic hepatitis C (CHC), and daclatasvir (DCV)/asunaprevir (ASV) was the first interferon-free DAA therapy introduced in Korea. Patients who achieve sustained virologic response (SVR) after DAA treatment are expected to have good prognoses. Therefore, in this study, we aimed to investigate the prognosis of these patients. Materials and Methods: This multicenter prospective observational study included patients with CHC who achieved SVR after DCV/ASV treatment. The primary endpoint was hepatocellular carcinoma (HCC) occurrence, which was reviewed annually. Results: We included 302 patients (median follow-up duration: 38 [16.5-60.0] months; median age: 58 [49-67] years) in the study. Cirrhosis was observed in 103 patients (34.1%), and the median Child-Pugh score was 5.0. HCC occurred in 16 patients (5.3%) within six years post-SVR; these patients were older and had higher cirrhosis prevalence, alpha-fetoprotein levels, and fibrosis-4 index scores than did those without HCC development. Cox proportional hazards analysis revealed that age > 71 years (p = 0.005) and cirrhosis (p = 0.035) were significant risk factors for HCC occurrence. Conclusions: Although the prognoses of patients who achieved SVR with DCV/ASV therapy were generally good, the risk for HCC was present, especially in older patients and in those with cirrhosis. Hence, early treatment at younger ages and regular follow-up surveillance after achieving SVR are warranted.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Neoplasias Hepáticas , Humanos , Idoso , Pessoa de Meia-Idade , Antivirais/uso terapêutico , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Prognóstico , Cirrose Hepática/etiologia , Genótipo
4.
Mar Drugs ; 21(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37504908

RESUMO

The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is essential for the bone remodeling process. This study aimed to investigate the effect of Ishophloroglucin A (IPA) isolated from Ishige okamurae on the function of osteoclasts and osteoblasts in vitro. First, we demonstrated the effect of IPA on osteoclastogenesis in receptor activator of nuclear factor κB ligand (RANKL)-induced RAW 264.7 cells. IPA inhibited the tartrate-resistant acid phosphatase (TRAP) activity and osteoclast differentiation in RANKL-induced RAW 264.7 cells. Moreover, it inhibited the RANKL-induced osteoclast-related factors, such as TRAP, matrix metalloproteinase-9 (MMP-9), and calcitonin receptor (CTR), and transcription factors, such as nuclear factor of activated T cells 1 (NFATc1) and c-Fos. IPA significantly suppressed RANKL-activated extracellular signal-regulated kinase (ERK), and NF-κB in RAW 264.7 cells. Our data indicated that the ERK and NF-κB pathways were associated with the osteoclastogenesis inhibitory activity of IPA. Next, we demonstrated the effect of IPA on osteoblastogenesis in MG-63 cells. IPA significantly promoted alkaline phosphatase (ALP) activity in MG-63 cells, along with the osteoblast differentiation-related markers bone morphogenetic protein 2 (BMP2), type 1 collage (COL1), p-Smad1/5/8, and Runx2, by activating the MAPK signaling pathways. Taken together, the study indicated that IPA could be effective in treating bone diseases, such as osteoporosis.


Assuntos
NF-kappa B , Osteogênese , Animais , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/farmacologia , Osteoclastos , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Diferenciação Celular , Células RAW 264.7
5.
Front Pharmacol ; 14: 1163970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274097

RESUMO

Anoctamin 1 (ANO1), a drug target for various cancers, including prostate and oral cancers, is an intracellular calcium-activated chloride ion channel that plays various physiopathological roles, especially in the induction of cancer growth and metastasis. In this study, we tested a novel compound isolated from Schisandra sphenanthera, known as schisandrathera D, for its inhibitory effect on ANO1. Schisandrathera D dose-dependently suppressed the ANO1 activation-mediated decrease in fluorescence of yellow fluorescent protein; however, it did not affect the adenosine triphosphate-induced increase in the intracellular calcium concentration or forskolin-induced cystic fibrosis transmembrane conductance regulator activity. Specifically, schisandrathera D gradually decreased the levels of ANO1 protein and significantly reduced the cell viability in ANO1-expressing cells when compared to those in ANO1-knockout cells. These effects could be attributed to the fact that schisandrathera D displayed better binding capacity to ANO1 protein than the previously known ANO1 inhibitor, Ani9. Finally, schisandrathera D increased the levels of caspase-3 and cleaved poly (ADP-ribose) polymerase 1, thereby indicating that its anticancer effect is mediated through apoptosis. Thus, this study highlights that schisandrathera D, which reduces ANO1 protein levels, has apoptosis-mediated anticancer effects in prostate and oral cancers, and thus, can be further developed into an anticancer agent.

6.
J Ethnopharmacol ; 302(Pt A): 115940, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36384207

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Echinosophora koreensis Nakai is an endemic plant species distributed in a limited area within the Korean province of Gangwon, including the Yanggu-gun, Inje-gun, Cheorwon-gun, Chuncheon-si, and Hongcheon-gun counties. It is used in traditional medicine to treat various disorders, such as fever, skin diseases, diuresis, and neuralgia. MATERIALS AND METHODS: This study demonstrated the effects of E. koreensis Nakai root extract (EKRE) on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Cell viability was assessed through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Nitric oxide (NO) production was measured using Griess reagent. Interleukin (IL)-6 and tumor necrosis factor (TNF) levels were assessed using enzyme-linked immunosorbent assays. Inducible nitric oxide synthase (iNOS), nuclear factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) expression were assessed using Western blot analysis. To examine the effects of EKRE in vivo, it was administered orally at doses of 50 or 200 mg/kg for 3 days in mice. Edema in the paws was induced through λ-carrageenan injection and measured hourly for up to 5 h using calipers. RESULTS: EKRE markedly suppressed LPS-generated NO, IL-6, and iNOS production in RAW 264.7 cells. Moreover, it suppressed the activation of the NF-κB and MAPK in LPS-stimulated cells. Furthermore, EKRE significantly inhibited carrageenan-induced edema in mouse paws. There were no significant differences in IL-6 and TNF production in paw tissue harvested from mice, but levels decreased at high EKRE concentrations (200 mg/kg). CONCLUSION: The results of this study provided validation for EKRE-induced inhibition of inflammatory responses in vitro and in vivo. This research suggested that EKRE is a promising treatment for inflammatory disorders.


Assuntos
Anti-Inflamatórios , Fabaceae , Extratos Vegetais , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Carragenina , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Fabaceae/química , Interleucina-6 , Lipopolissacarídeos , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B , Óxido Nítrico , Extratos Vegetais/farmacologia , Células RAW 264.7
7.
J Asian Nat Prod Res ; 25(1): 18-26, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35306942

RESUMO

Three new chromanes, malloapeltas J-L (1-3), and one new flavone C-glycoside, malloflavoside (4), together with four known compounds, apigenin 6-C-ß-D-xylopyranosyl-8-C-α-L-arabinopyranoside (5), apigenin 6-C-ß-D-glucopyranosyl-8-C-α-L-arabinopyranoside (6), apigenin 7-O-ß-D-apiofuranosyl-(1→2)-ß-D-glucopyranoside (7), and acantrifoside E (8) were isolated from the methanol extract of the leaves of Mallotus apelta. Their chemical structures were determined using spectroscopic methods, including 1D, 2D NMR, and HR-ESI-MS methods. All the isolated compounds were evaluated their cytotoxic activity against human prostate cancer (PC-3) and human breast cancer (MCF-7) cells, but none of them showed cytotoxicities on both human cancer cell lines.


Assuntos
Flavonas , Mallotus (Planta) , Humanos , Apigenina , Glicosídeos/farmacologia , Glicosídeos/química , Flavonas/farmacologia
8.
Nat Prod Res ; : 1-7, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36239487

RESUMO

Using combined chromatographic methods, two new triterpenoid glycosides, bacopasaponin K (1) and bacopasaponin L (2), along with eight known compounds, bacopaside IV (3), bacopaside VII (4), bacopasaponin E (5), bacoside A3 (6), bacopasaponin F (7), bacopasaponin C (8), bacopaside I (9), and bacopaside II (10) were isolated from the methanol extract of the Bacopa monnieri. Their structures were elucidated by 1D-, 2D-NMR spectroscopic analysis, HR-ESI-MS and comparing with the NMR data reported in the literature. All these compounds were evaluated for their cytotoxic activity using the cell counting kit-8 (CCK-8) assay. Compounds 4, 6, 8, and 10 exhibited potential cytotoxic effects against human lung cancer cells (PC9) and human colon cancer cells (SW620).

9.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080161

RESUMO

Growth and maintenance of skeletal muscle is essential for athletic performance and a healthy life. Stimulating the proliferation and differentiation of muscle cells may help prevent loss of muscle mass. To discover effective natural substances enabling to mitigate muscle loss without side effects, we evaluated muscle growth with several compounds extracted from Catalpa bignonioides Walt. Among these compounds, pinoresinol and vanillic acid increased C2C12, a mouse myoblast cell line, proliferation being the most without cytotoxicity. These substances activated the Akt/mammalian target of the rapamycin (mTOR) pathway, which positively regulates the proliferation of muscle cells. In addition, the results of in silico molecular docking study showed that they may bind to the active site of insulin-like growth factor 1 receptor (IGF-1R), which is an upstream of the Akt/mTOR pathway, indicating that both pinoresinol and vanillic acid stimulate myoblast proliferation through direct interaction with IGF-1R. These results suggest that pinoresinol and vanillic acid may be a natural supplement to improve the proliferation of skeletal muscle via IGF-1R/Akt/mTOR signaling and thus strengthen muscles.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Ácido Vanílico , Animais , Proliferação de Células , Furanos , Fator de Crescimento Insulin-Like I/metabolismo , Lignanas , Mamíferos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacologia
10.
Biosensors (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940228

RESUMO

Tumor angiogenesis is enhanced in all types of tumors to supply oxygen and nutrients for their growth and metastasis. With the development of anti-angiogenic drugs, the importance of technology that closely monitors tumor angiogenesis has also been emerging. However, to date, the technology for observing blood vessels requires specialized skills with expensive equipment, thereby limiting its applicability only to the laboratory setting. Here, we used a preclinical optical imaging system for small animals and, for the first time, observed, in real time, the entire process of blood vessel development in tumor-bearing mice injected with indocyanine green. Time-lapse sequential imaging revealed blood vessel volume and blood flow dynamics on a microscopic scale. Upon analyzing fluorescence dynamics at each stage of tumor progression, vessel volume and blood flow were found to increase as the tumor developed. Conversely, these vascular parameters decreased when the mice were treated with angiogenesis inhibitors, which suggests that the effects of drugs targeting angiogenesis can be rapidly and easily screened. The results of this study may help evaluate the efficacy of angiogenesis-targeting drugs by facilitating the observation of tumor blood vessels easily in a laboratory unit without large and complex equipment.


Assuntos
Neoplasias , Preparações Farmacêuticas , Inibidores da Angiogênese/uso terapêutico , Animais , Camundongos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Imagem Óptica
11.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053881

RESUMO

Acute myeloid leukemia (AML) is an aggressive type of human leukemia with a low survival rate, and its complete remission remains challenging. Although chemotherapy is the first-line treatment of AML, it exerts toxicity in noncancerous cells when used in high doses, thus necessitating the development of novel compounds with a high therapeutic window. This study aimed to investigate the anticancer effects of several compounds derived from the fruits of Melia azedarach (a tree with medicinal properties). Among them, 1-cinnamoyltrichilinin (CT) was found to strongly suppress the viability of HL-60 human leukemia cells. CT treatment induced apoptosis and increased nuclear fragmentation and fractional DNA content in HL-60 cells in a dose-dependent manner. CT induced phosphorylation of p38 mitogen-activated protein kinases (p38), though not of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), and activated Bcl-2 family proteins towards the proapoptosis and cleavage of caspase-3 and poly (ADP-ribose) polymerase. Both CT-mediated apoptosis and apoptotic protein expression were reversed by treatment with the p38 inhibitor, thereby indicating the p38 pathway to be critical in CT-stimulated apoptosis. The results collectively indicated CT to suppress HL-60 survival by activating the p38 pathway and inducing apoptosis, hence being a novel potential therapeutic agent for AML.


Assuntos
Apoptose/efeitos dos fármacos , Limoninas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melia azedarach/química , Extratos Vegetais/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Limoninas/química , Estrutura Molecular , Extratos Vegetais/química
12.
Int Immunopharmacol ; 82: 106146, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32088638

RESUMO

We investigated the protective effect of the bioactive compound eckol on inflammatory-related skin lesions in vitro. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture, and treated with various concentration of eckol (25, 50, and 100 µg/ml). The expression of pro-inflammatory cytokines and chemokines were analyzed by enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR), respectively. Mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways regulate immune and inflammation responses. Phosphorylation of MAPKs and NF-κB, indicating activation of respective signaling pathways, was examined by western blot analysis. Treatment of TNF-α and IFN-γ promoted the mRNA expression and production of pro-inflammatory cytokines and chemokines in HaCaT cells. However, eckol significantly suppressed the these mediators. Furthermore, activation of TNF-α/IFN-γ-induced MAPKs and NF-κB signaling pathway was inhibited by eckol treatment. Eckol also hampered the TNF-α/IFN-γ-mediated nuclear translocation of NF-κB p65 in HaCaT cells. Taken together, our findings demonstrate that eckol shows effective protective activity against TNF-α/IFN-γ-induced skin inflammation.

13.
EXCLI J ; 16: 1103-1113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29285007

RESUMO

The aim of this study was to investigate the chemical constituents of Lindera erythrocarpa essential oil (LEO) by gas chromatography-mass spectrometry and evaluate their inhibitory effect on the expression of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Fifteen compounds, accounting for 63.7 % of the composition of LEO, were identified. The main compounds were nerolidol (18.73 %), caryophyllene (14.41 %), α-humulene (7.73 %), germacrene-D (4.82 %), and α-pinene (4.47 %). LEO significantly inhibited the expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, and subsequent production of NO and prostaglandin E2. In addition, it reduced the release of pro-inflammatory cytokines in LPS-activated RAW264.7 cells. The molecular mechanism underlying the effect of LEO was associated with inhibition of the phosphorylation of mitogen-activated protein kinase (MAPK). Furthermore, LEO inhibited LPS-induced phosphorylation and degradation of inhibitor of kappa B-α, which is required for the activation of the p50 and p65 nuclear factor (NF)-κB subunits in RAW264.7 cells. Taken together, these data suggest that LEO exerted its anti-inflammatory effect by downregulating LPS-induced production of pro-inflammatory mediators through the inhibition of NF-κB and MAPK signaling in RAW264.7 cells.

14.
Fish Shellfish Immunol ; 68: 525-529, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743626

RESUMO

In this study, the roles of reactive oxygen species (ROS) and NF-κB on inflammation induction in lipopolysaccharide (LPS)-stimulated zebrafish embryos were evaluated using N-acetyl-l-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC), specific inhibitors of ROS and NF-κB, respectively. LPS-stimulated zebrafish embryos showed increasing production of NO and ROS and expression of iNOS and COX-2 protein, compared to a control group without LPS. However, NAC significantly inhibited production of NO and ROS and markedly suppressed expression of iNOS and COX-2 protein in LPS-stimulated zebrafish embryos. The mRNA expressions of NF-κB such as p65NF-κB and IκB-A were significantly increased after LPS stimulation, whereas PDTC attenuated mRNA expression of NF-κB. PDTC also inhibited production of NO and reduced expression of iNOS and COX-2 protein in LPS-stimulated zebrafish embryos. Taken together, these results indicated that LPS increases pro-inflammatory mediators in zebrafish embryos through ROS and NF-κB regulation.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/veterinária , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra , Acetilcisteína/metabolismo , Animais , Embrião não Mamífero , Regulação da Expressão Gênica , Inflamação/imunologia , Lipopolissacarídeos/administração & dosagem , Pirrolidinas/metabolismo , Tiocarbamatos/metabolismo
15.
EXCLI J ; 15: 434-445, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822172

RESUMO

The anti-inflammatory properties of the supercritical fluid extract of Ishige okamurae (SFEIO) on lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. The lipid profile of the SFEIO, reviled the presence of palmitic acid (220.2 mg/g), linoleic acid (168.0 mg/g), and oleic acid (123.0 mg/g). SFEIO was found to exert it's anti-inflammatory effects through inhibiting nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 production in LPS-stimulated RAW 264.7 cells, without inducing cytotoxicity. SFEIO did not effect on the LPS-induced p38 kinase phosphorylation, whereas it attenuated the extracellular-related signaling kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation. Furthermore, SFEIO inhibited the LPS-induced IκB-α degradation and p50 NF-κB activation. These results suggest that SFEIO exerts its anti-inflammatory effects in LPS-activated RAW 264.7 cells by down-regulating the activation of ERK, JNK, and NF-κB.

16.
Chem Biol Interact ; 258: 108-14, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27569861

RESUMO

The aim of the present study was to investigate the effects of 5-bromo-2-hydroxy-4-methyl-benzaldehyde (BHMB) on inflammatory responses to lipopolysaccharide (LPS) in RAW 264.7 cells and the associated mechanism of action. BHMB concentration-dependently suppressed protein and mRNA expressions of iNOS and COX-2, thereby inhibiting the production of NO and PGE2 in LPS-stimulated RAW 264.7 cells. BHMB also reduced the mRNA expression of TNF-α, IL-6, and IL-1ß in LPS-stimulated RAW 264.7 cells. To elucidate the mechanism underlying the anti-inflammatory activity of BHMB, we investigated the effects of BHMB on the mitogen-activated protein kinase and nuclear factor-kappa B (NF-κB) pathways. BHMB suppressed the phosphorylation and degradation of IκB-α and markedly inhibited the nuclear translocation of p65 and p50 in LPS-stimulated RAW 264.7 cells. The compound also inhibited the LPS-stimulated phosphorylation of ERK and p38. Taken together, these results illustrated that BHMB suppresses pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 cells by inhibiting the phosphorylation of ERK and p38 and the activation of NF-κB.


Assuntos
Benzaldeídos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Benzaldeídos/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA