Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 505: 153827, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729513

RESUMO

Pyroptosis is a form of programmed cell death characterized by gasdermin (GSDM)-mediated pore formation in the cell membrane, resulting in the release of pro-inflammatory cytokines and cellular lysis. Increasing evidence has shown that pyroptosis is responsible for the progression of various pulmonary disorders. The inhalation of polyhexamethylene guanidine (PHMG) causes severe lung inflammation and pulmonary toxicity; however, the underlying mechanisms are unknown. Therefore, in this study, we investigate the role of pyroptosis in PHMG-induced pulmonary toxicity. We exposed bronchial epithelial cells, BEAS-2B, to PHMG phosphate (PHMG-p) and evaluated cell death type, reactive oxygen species (ROS) levels, and relative expression levels of pyroptosis-related proteins. Our data revealed that PHMG-p reduced viability and induced morphological alterations in BEAS-2B cells. Exposure to PHMG-p induced excessive accumulation of mitochondrial ROS (mtROS) in BEAS-2B cells. PHMG-p activated caspase-dependent apoptosis as well as NLRP3/caspase-1/GSDMD-mediated- and caspase-3/GSDME-mediated pyroptosis through mitochondrial oxidative stress in BEAS-2B cells. Notably, PHMG-p reduced mitochondrial respiratory function and induced the translocation of Bax and cleaved GSDM into the mitochondria, leading to mitochondrial dysfunction. Our results enhanced our understanding of PHMG-p-induced lung toxicity by demonstrating that PHMG-p induces pyroptosis via mtROS-induced mitochondrial dysfunction in bronchial epithelial cells.


Assuntos
Brônquios , Células Epiteliais , Guanidinas , Mitocôndrias , Piroptose , Espécies Reativas de Oxigênio , Piroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Brônquios/efeitos dos fármacos , Brônquios/patologia , Brônquios/metabolismo , Linhagem Celular , Guanidinas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396860

RESUMO

Hypoxia-induced neuronal death is a major cause of neurodegenerative diseases. Pyroptosis is a type of inflammatory programmed cell death mediated by elevated intracellular levels of reactive oxygen species (ROS). Therefore, we hypothesized that hypoxia-induced ROS may trigger pyroptosis via caspase-dependent gasdermin (GSDM) activation in neuronal cells. To test this, we exposed SH-SY5Y neuronal cells to cobalt chloride (CoCl2) to trigger hypoxia and then evaluated the cellular and molecular responses to hypoxic conditions. Our data revealed that CoCl2 induced cell growth inhibition and the expression of hypoxia-inducible factor-1α in SH-SY5Y cells. Exposure to CoCl2 elicits excessive accumulation of cytosolic and mitochondrial ROS in SH-SY5Y cells. CoCl2-induced hypoxia not only activated the intrinsic (caspases-3, -7, and -9) apoptotic pathway but also induced caspase-3/GSDME-dependent and NLRP3/caspase-1/GSDMD-mediated pyroptosis in SH-SY5Y cells. Importantly, inhibition of caspase-3 and -1 using selective inhibitors ameliorated pyroptotic cell death and downregulated GSDM protein expression. Additionally, treatment with a ROS scavenger significantly suppressed caspase- and pyroptosis-related proteins in CoCl2-treated SH-SY5Y cells. Our findings indicate that hypoxia-mediated ROS production plays an important role in the activation of both apoptosis and pyroptosis in SH-SY5Y neuronal cells, thus providing a potential therapeutic strategy for hypoxia-related neurological diseases.


Assuntos
Cobalto , Neuroblastoma , Piroptose , Humanos , Piroptose/fisiologia , Caspase 3/metabolismo , Gasderminas , Espécies Reativas de Oxigênio/metabolismo , Hipóxia , Linhagem Celular Tumoral , Caspase 1/metabolismo
3.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203397

RESUMO

Toll-like receptor 3 (TLR3) plays an important role in double-stranded RNA recognition and triggers the innate immune response by acting as a key receptor against viral infections. Intracellular reactive oxygen species (ROS) are involved in TLR3-induced inflammatory responses during viral infections; however, their relationship with mitochondrial ROS (mtROS) remains largely unknown. In this study, we show that polyinosinic-polycytidylic acid (poly(I:C)), a mimic of viral RNA, induced TLR3-mediated nuclear factor-kappa B (NF-κB) signaling pathway activation and enhanced mtROS generation, leading to inflammatory cytokine production. TLR3-targeted small interfering RNA (siRNA) and Mito-TEMPO inhibited inflammatory cytokine production in poly(I:C)-treated BEAS-2B cells. Poly(I:C) recruited the TLR3 adaptor molecule Toll/IL-1R domain-containing adaptor, inducing IFN (TRIF) and activated NF-κB signaling. Additionally, TLR3-induced mtROS generation suppression and siRNA-mediated TRIF downregulation attenuated mitochondrial antiviral signaling protein (MAVS) degradation. Our findings provide insights into the TLR3-TRIF signaling pathway and MAVS in viral infections, and suggest TLR3-mtROS as a therapeutic target for the treatment of airway inflammatory and viral infectious diseases.


Assuntos
Receptor 3 Toll-Like , Viroses , Humanos , Espécies Reativas de Oxigênio , NF-kappa B , Transdução de Sinais , Células Epiteliais , Poli I-C/farmacologia , RNA Interferente Pequeno/genética , Citocinas , Proteínas Adaptadoras de Transporte Vesicular/genética
4.
Cell Biol Int ; 44(6): 1394-1404, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32129540

RESUMO

Hypoxia is a condition in which the whole body or a region of the body is deprived of oxygen supply. The brain is very sensitive to the lack of oxygen and cerebral hypoxia can rapidly cause severe brain damage. Astrocytes are essential for the survival and function of neurons. Therefore, protecting astrocytes against cell death is one of the main therapeutic strategies for treating hypoxia. Hence, the mechanism of hypoxia-induced astrocytic cell death should be fully elucidated. In this study, astrocytes were exposed to hypoxic conditions using a hypoxia work station or the hypoxia mimetic agent cobalt chloride (CoCl2 ). Both the hypoxic gas mixture (1% O2 ) and chemical hypoxia-induced apoptotic cell death in T98G glioblastoma cells and mouse primary astrocytes. Reactive oxygen species were generated in response to the hypoxia-mediated activation of caspase-1. Active caspase-1 induced the classical caspase-dependent apoptosis of astrocytes. In addition, the microRNA processing enzyme Dicer was cleaved by caspase-3 during hypoxia. Knockdown of Dicer using antisense oligonucleotides induced apoptosis of T98G cells. Taken together, these results suggest that astrocytic cell death during hypoxia is mediated by the reactive oxygen species/caspase-1/classical caspase-dependent apoptotic pathway. In addition, the decrease in Dicer levels by active caspase-3 amplifies this apoptotic pathway via a positive feedback loop. These findings may provide a new target for therapeutic interventions in cerebral hypoxia.


Assuntos
Astrócitos/metabolismo , Encéfalo , Caspase 1/metabolismo , RNA Helicases DEAD-box/fisiologia , Ribonuclease III/fisiologia , Animais , Apoptose , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/metabolismo , Hipóxia Celular , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Mol Ther Nucleic Acids ; 12: 543-553, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195790

RESUMO

Gemcitabine has been considered a first-line chemotherapy agent for the treatment of pancreatic cancer. However, the initial response rate of gemcitabine is low and chemoresistance occurs frequently. Aptamers can be effectively internalized into cancer cells via binding to target molecules with high affinity and specificity. In the current study, we constructed an aptamer-based gemcitabine delivery system, APTA-12, and assessed its therapeutic effects on pancreatic cancer cells in vitro and in vivo. APTA-12 was effective in vitro and in vivo in pancreatic cancer cells with high expression of nucleolin. The results of in vitro cytotoxicity assays indicated that APTA-12 inhibited the growth of pancreatic cancer cell lines. In vivo evaluation showed that APTA-12 effectively inhibited the growth of pancreatic cancer in Capan-1 tumor-bearing mice compared to mice that received gemcitabine alone or vehicle. These results suggest that the gemcitabine-incorporated APTA-12 aptamer may be a promising targeted therapeutic strategy for pancreatic cancer.

6.
J Recept Signal Transduct Res ; 37(4): 416-421, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28279120

RESUMO

CCR3, the receptor for CCL11, is expressed on the surface of immune cells and even on non-immune cells. CCL11-CCR3 interactions can promote cell migration and proliferation. In this study, we investigated the effect of CCL11 on angiogenesis in HUVECs and also examined the molecular mechanisms of this process. We found that CCL11 induced mRNA transcription and protein expression of CCR3 in HUVECs. Moreover, the scratch wound healing assay and MTS proliferation assay both demonstrated that CCL11 promotes endothelial cell migration and induces weak proliferation. CCL11 directly induced microvessel sprouting from the rat aortic ring; these effects occurred earlier and to a greater extent than with VEGF stimulation. Furthermore, CCL11-induced phosphorylation of Akt was abolished by PI3K inhibitors. siRNA-mediated knockdown of CCR3 led to a significant reduction of PI3K phosphorylation. However, the phosphorylation levels of ERK1/2 were not changed, even after CCL11 treatment. Cumulatively, our data suggest that the CCL11-CCR3 interaction mainly activates PI3K/Akt signal transduction pathway in HUVECs.


Assuntos
Quimiocina CCL11/genética , Neovascularização Fisiológica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores CCR3/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CCL11/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/genética , Fosfatidilinositol 3-Quinases/genética , RNA Interferente Pequeno/genética , Ratos , Receptores CCR3/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização/genética
7.
Biomaterials ; 100: 143-51, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27258484

RESUMO

Aptamers are promising next-generation ligands used in molecular imaging and theragnosis. Aptamers are synthetic nucleic acids that can be held together with complementary sequences by base-pair hybridization. In this study, the complementary oligonucleotide (cODN) hybridization-based aptamer conjugation platform was developed to use aptamers as the molecular imaging agent. The cODN was pre-labeled with fluorescent dye or radioisotope and hybridized with a matched sequence containing aptamers in aqueous conditions. The cODN platform-hybridized aptamers exhibited good serum stability and specific binding affinity towards target cancer cells both in vitro and in vivo. These results suggest that the newly designed aptamer conjugation platform offers great potential for the versatile application of aptamers as molecular imaging agents.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Radioisótopos de Flúor/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Aptâmeros de Nucleotídeos/farmacocinética , Sequência de Bases , Células CHO , Linhagem Celular Tumoral , Cricetulus , Feminino , Corantes Fluorescentes/farmacocinética , Radioisótopos de Flúor/farmacocinética , Camundongos Nus , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Ratos
8.
Endocrinology ; 156(1): 157-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25356824

RESUMO

Gallic acid [3,4,5-trihydroxybenzoic acid (GA)], a natural phytochemical, is known to have a variety of cellular functions including beneficial effects on metabolic syndromes. However, the molecular mechanism by which GA exerts its beneficial effects is not known. Here we report that GA plays its role through the activation of AMP-activated protein kinase (AMPK) and by regulating mitochondrial function via the activation of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Sirtuin 1 (Sirt1) knockdown significantly blunted GA's effect on PGC1α activation and downstream genes, suggesting a critical role of the AMPK/Sirt1/PGC1α pathway in GA's action. Moreover, diet-induced obese mice treated with GA showed significantly improved glucose and insulin homeostasis. In addition, the administration of GA protected diet-induced body weight gain without a change in food intake. Biochemical analyses revealed a marked activation of AMPK in the liver, muscle, and interscapular brown adipose tissue of the GA-treated mice. Moreover, uncoupling protein 1 together with other genes related to energy expenditure was significantly elevated in the interscapular brown adipose tissue. Taken together, these results indicate that GA plays its beneficial metabolic roles by activating the AMPK/Sirt1/PGC1α pathway and by changing the interscapular brown adipose tissue genes related to thermogenesis. Our study points out that targeting the activation of the AMPK/Sirt1/PGC1α pathway by GA or its derivatives might be a potential therapeutic intervention for insulin resistance in metabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal/fisiologia , Ácido Gálico/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Autofagia , Glicemia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Ativação Enzimática , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Neuroinflammation ; 9: 35, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22339795

RESUMO

BACKGROUND: Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-O-methylhonokiol, a constituent of Magnolia officinalis, on memory deficiency caused by LPS, along with the underlying mechanisms. METHODS: We investigated whether 4-O-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 µg/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4-O-methylhonkiol (0.5, 1 and 2 µM). RESULTS: Oral administration of 4-O-methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4-O-methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In in vitro study, we also found that 4-O-methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E2, tumor necrosis factor-α, and interleukin-1ß in the LPS-stimulated cultured astrocytes. 4-O-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4-O-methylhonokiol inhibited LPS-induced Aß1-42 generation, ß- and γ-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells. CONCLUSION: These results suggest that 4-O-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4-O-methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Inflamação/tratamento farmacológico , Lignanas/uso terapêutico , Transtornos da Memória/tratamento farmacológico , NF-kappa B/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Análise de Variância , Animais , Anti-Inflamatórios/farmacologia , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Transformada , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Proteína Glial Fibrilar Ácida/metabolismo , Marcação In Situ das Extremidades Cortadas , Inflamação/induzido quimicamente , Lignanas/farmacologia , Lipopolissacarídeos/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/metabolismo
10.
Nat Med ; 15(9): 1023-30, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668192

RESUMO

Disruption of the precise balance of positive and negative molecular regulators of blood and lymphatic vessel growth can lead to myriad diseases. Although dozens of natural inhibitors of hemangiogenesis have been identified, an endogenous selective inhibitor of lymphatic vessel growth has not to our knowledge been previously described. We report the existence of a splice variant of the gene encoding vascular endothelial growth factor receptor-2 (Vegfr-2) that encodes a secreted form of the protein, designated soluble Vegfr-2 (sVegfr-2), that inhibits developmental and reparative lymphangiogenesis by blocking Vegf-c function. Tissue-specific loss of sVegfr-2 in mice induced, at birth, spontaneous lymphatic invasion of the normally alymphatic cornea and hyperplasia of skin lymphatics without affecting blood vasculature. Administration of sVegfr-2 inhibited lymphangiogenesis but not hemangiogenesis induced by corneal suture injury or transplantation, enhanced corneal allograft survival and suppressed lymphangioma cellular proliferation. Naturally occurring sVegfr-2 thus acts as a molecular uncoupler of blood and lymphatic vessels; modulation of sVegfr-2 might have therapeutic effects in treating lymphatic vascular malformations, transplantation rejection and, potentially, tumor lymphangiogenesis and lymphedema (pages 993-994).


Assuntos
Linfangiogênese/genética , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Processamento Alternativo , Animais , Animais Recém-Nascidos , Sequência de Bases , Córnea/irrigação sanguínea , Córnea/crescimento & desenvolvimento , Córnea/metabolismo , DNA Complementar/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator C de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência
11.
Nature ; 460(7252): 225-30, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19525930

RESUMO

Age-related macular degeneration (AMD), a leading cause of blindness worldwide, is as prevalent as cancer in industrialized nations. Most blindness in AMD results from invasion of the retina by choroidal neovascularisation (CNV). Here we show that the eosinophil/mast cell chemokine receptor CCR3 is specifically expressed in choroidal neovascular endothelial cells in humans with AMD, and that despite the expression of its ligands eotaxin-1, -2 and -3, neither eosinophils nor mast cells are present in human CNV. Genetic or pharmacological targeting of CCR3 or eotaxins inhibited injury-induced CNV in mice. CNV suppression by CCR3 blockade was due to direct inhibition of endothelial cell proliferation, and was uncoupled from inflammation because it occurred in mice lacking eosinophils or mast cells, and was independent of macrophage and neutrophil recruitment. CCR3 blockade was more effective at reducing CNV than vascular endothelial growth factor A (VEGF-A) neutralization, which is in clinical use at present, and, unlike VEGF-A blockade, is not toxic to the mouse retina. In vivo imaging with CCR3-targeting quantum dots located spontaneous CNV invisible to standard fluorescein angiography in mice before retinal invasion. CCR3 targeting might reduce vision loss due to AMD through early detection and therapeutic angioinhibition.


Assuntos
Degeneração Macular/diagnóstico , Degeneração Macular/terapia , Receptores CCR3/antagonistas & inibidores , Receptores CCR3/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiocina CCL11/antagonistas & inibidores , Quimiocina CCL11/metabolismo , Quimiocina CCL24/antagonistas & inibidores , Quimiocina CCL24/metabolismo , Quimiocina CCL26 , Quimiocinas CC/antagonistas & inibidores , Quimiocinas CC/metabolismo , Corioide/irrigação sanguínea , Corioide/citologia , Corioide/metabolismo , Neovascularização de Coroide/diagnóstico , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Inflamação , Leucócitos , Ligantes , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pontos Quânticos , Receptores CCR3/análise , Receptores CCR3/genética , Receptores CCR3/imunologia , Retina/efeitos dos fármacos , Retina/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA