Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(2): e2306808, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37732588

RESUMO

The plasma membranes (PM) of mammalian cells contain diverse lipids, proteins, and carbohydrates that are important for systemic recognition and communication in health and disease. Cell membrane coating technology that imparts unique properties of natural plasma membranes to the surface of encapsulated nanoparticles is thus becoming a powerful platform for drug delivery, immunomodulation, and vaccination. However, current coating methods fail to take full advantage of the natural systems because they disrupt the complex and functionally essential features of PMs, most notably the chemical diversity and compositional differences of lipids in two leaflets of the PM. Herein, a new lipid coating approach is reported in which the lipid composition is optimized through a combination of biomimetic and systematic variation approaches for the custom design of nanocarrier systems for precision drug delivery. Nanocarriers coated with the optimized lipids offer unique advantages in terms of bioavailability and efficiency in tumor targeting, tumor penetration, cellular uptake, and drug release. This pilot study provides new insight into the rational design and optimization of nanocarriers for cancer chemotherapeutic drugs and lays the foundation for further customization of cell membrane-mimicking nanocarriers through systematic incorporation of other components.


Assuntos
Nanopartículas , Neoplasias , Animais , Membrana Celular/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Mamíferos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Projetos Piloto , Humanos
2.
Science ; 382(6667): 223-230, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824668

RESUMO

Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.


Assuntos
Transporte Axonal , Neurônios , Fosfatos de Fosfatidilinositol , Vesículas Sinápticas , Humanos , Transporte Axonal/fisiologia , Cinesinas/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
3.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747849

RESUMO

3'-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Generation of 3'-phosphoinositides are driven by three families of phosphoinositide 3-kinases (PI3K) but the mechanisms underlying their regulation and cross-talk are not fully understood. Among 3'-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of specific probes. By means of spatiotemporally resolved in situ quantitative imaging of PI(3,5)P 2 using a newly developed ratiometric PI(3,5)P 2 sensor we demonstrate that a special pool of PI(3,5)P 2 is generated on lysosomes and late endosomes in response to growth factor stimulation. This PI(3,5)P 2 pool, the formation of which is mediated by Class II PI3KC2ß and PIKFyve, plays a crucial role in terminating the activity of growth factor-stimulated Class I PI3K, one of the most frequently mutated proteins in cancer, via specific interaction with its regulatory p85 subunit. Cancer-causing mutations of Class I PI3K inhibit the p85-PI(3,5)P 2 interaction and thereby induce sustained activation of Class I PI3K. Our results unravel a hitherto unknown tight regulatory interplay between Class I and II PI3Ks mediated by PI(3,5)P 2 , which may be important for controlling the strength of PI3K-mediated growth factor signaling. These results also suggest a new therapeutic possibility of treating cancer patients with p85 mutations.

4.
Nat Chem Biol ; 19(2): 239-250, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36229686

RESUMO

Membrane lipids control the cellular activity of kinases containing the Src homology 2 (SH2) domain through direct lipid-SH2 domain interactions. Here we report development of new nonlipidic small molecule inhibitors of the lipid-SH2 domain interaction that block the cellular activity of their host proteins. As a pilot study, we evaluated the efficacy of lipid-SH2 domain interaction inhibitors for spleen tyrosine kinase (Syk), which is implicated in hematopoietic malignancies, including acute myeloid leukemia (AML). An optimized inhibitor (WC36) specifically and potently suppressed oncogenic activities of Syk in AML cell lines and patient-derived AML cells. Unlike ATP-competitive Syk inhibitors, WC36 was refractory to de novo and acquired drug resistance due to its ability to block not only the Syk kinase activity, but also its noncatalytic scaffolding function that is linked to drug resistance. Collectively, our study shows that targeting lipid-protein interaction is a powerful approach to developing new small molecule drugs.


Assuntos
Leucemia Mieloide Aguda , Proteínas Tirosina Quinases , Humanos , Proteínas Tirosina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Projetos Piloto , Domínios de Homologia de src , Fosforilação , Leucemia Mieloide Aguda/tratamento farmacológico , Lipídeos , Quinase Syk/metabolismo
5.
Biochem Pharmacol ; 196: 114621, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34043965

RESUMO

Cholesterol has been implicated in the pathophysiology and progression of several cancers now, although the mechanisms by which it influences cancer biology are just emerging. Two likely contributing mechanisms are the ability for cholesterol to directly regulate signaling molecules within the membrane, and certain metabolites acting as signaling molecules. One such metabolite is the oxysterol 27-hydroxycholesterol (27HC), which is a primary metabolite of cholesterol synthesized by the enzyme Cytochrome P450 27A1 (CYP27A1). Physiologically, 27HC is involved in the regulation of cholesterol homeostasis and contributes to cholesterol efflux through liver X receptor (LXR) and inhibition of de novo cholesterol synthesis through the insulin-induced proteins (INSIGs). 27HC is also a selective modulator of the estrogen receptors. An increasing number of studies have identified its importance in cancer progression of various origins, especially in breast cancer. In this review, we discuss the physiological roles of 27HC targeting these two nuclear receptors and the subsequent contribution to cancer progression. We describe how 27HC promotes tumor growth directly through cancer-intrinsic factors, and indirectly through its immunomodulatory roles which lead to decreased immune surveillance and increased tumor invasion. This review underscores the importance of the cholesterol metabolic pathway in cancer progression and the potential therapeutic utility of targeting this metabolic pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Hidroxicolesteróis/metabolismo , Neoplasias/metabolismo , Animais , Anticolesterolemiantes/uso terapêutico , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Humanos , Neoplasias/induzido quimicamente , Neoplasias/tratamento farmacológico
6.
FASEB J ; 34(11): 14671-14694, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914503

RESUMO

Oxysterol-binding protein-related protein 2 (ORP2), a cholesterol-PI(4,5)P2 countercurrent transporter, was recently identified as a novel regulator of plasma membrane (PM) cholesterol and PI(4,5)P2 content in HeLa cells. Here, we investigate the role of ORP2 in endothelial cell (EC) cholesterol and PI(4,5)P2 distribution, angiogenic signaling, and angiogenesis. We show that ORP2 knock-down modifies the distribution of cholesterol accessible to a D4H probe, between late endosomes and the PM. Depletion of ORP2 from ECs inhibits their angiogenic tube formation capacity, alters the gene expression of angiogenic signaling pathways such as VEGFR2, Akt, mTOR, eNOS, and Notch, and reduces EC migration, proliferation, and cell viability. We show that ORP2 regulates the integrity of VEGFR2 at the PM in a cholesterol-dependent manner, the depletion of ORP2 resulting in proteolytic cleavage by matrix metalloproteinases, and reduced activity of VEGFR2 and its downstream signaling. We demonstrate that ORP2 depletion increases the PM PI(4,5)P2 coincident with altered F-actin morphology, and reduces both VEGFR2 and cholesterol in buoyant raft membranes. Moreover, ORP2 knock-down suppresses the expression of the lipid raft-associated proteins VE-cadherin and caveolin-1. Analysis of the retinal microvasculature in ORP2 knock-out mice generated during this study demonstrates the subtle alterations of morphology characterized by reduced vessel length and increased density of tip cells and perpendicular sprouts. Gene expression changes in the retina suggest disturbance of sterol homeostasis, downregulation of VE-cadherin, and a putative disturbance of Notch signaling. Our data identifies ORP2 as a novel regulator of EC cholesterol and PI(4,5)P2 homeostasis and cholesterol-dependent angiogenic signaling.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Receptores de Esteroides/metabolismo , Transdução de Sinais , Actinas/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Endossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Metaloproteinases da Matriz/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Receptores de Esteroides/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
ACS Chem Biol ; 15(7): 1913-1920, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32525312

RESUMO

Ratiometric fluorescence sensors are powerful tools for direct quantification of diverse biological analytes. To overcome a shortage of solvatochromic fluorophores crucial for in situ ratiometric imaging of biological targets, we prepared and characterized a small library of modular fluorophores with diverse spectral properties. Among them, WCB and WCR showed excellent spectral properties, including high photostability, brightness, and solvatochromism, and are ideally suited for dual ratiometric imaging due to their spectral orthogonality. By conjugating WCB and WCR with protein-based lipid sensors, we were able to achieve robust simultaneous in situ quantitative imaging of two metabolically linked signaling lipids, phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate in live cells. This study shows that any combination of signaling molecules can be simultaneously quantified in a spatiotemporally resolved manner by ratiometric imaging with finely tuned solvatochromic fluorophores.


Assuntos
Fluorenos/química , Corantes Fluorescentes/química , Fosfatos de Fosfatidilinositol/análise , Animais , Fluorenos/síntese química , Corantes Fluorescentes/síntese química , Camundongos , Células NIH 3T3 , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Fluorescência
8.
Cell ; 175(5): 1352-1364.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415841

RESUMO

Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor Patched-1/química , Receptor Patched-1/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transdução de Sinais
9.
Mol Cell ; 71(6): 1092-1104.e5, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174291

RESUMO

Activation of class I phosphatidylinositol 3-kinase (PI3K) leads to formation of phosphatidylinositol-3,4,5-trisphophate (PIP3) and phosphatidylinositol-3,4-bisphophate (PI34P2), which spatiotemporally coordinate and regulate a myriad of cellular processes. By simultaneous quantitative imaging of PIP3 and PI34P2 in live cells, we here show that they have a distinctively different spatiotemporal distribution and history in response to growth factor stimulation, which allows them to selectively induce the membrane recruitment and activation of Akt isoforms. PI34P2 selectively activates Akt2 at both the plasma membrane and early endosomes, whereas PIP3 selectively stimulates Akt1 and Akt3 exclusively at the plasma membrane. These spatiotemporally distinct activation patterns of Akt isoforms provide a mechanism for their differential regulation of downstream signaling molecules. Collectively, our studies show that different spatiotemporal dynamics of PIP3 and PI34P2 and their ability to selectively activate key signaling proteins allow them to mediate class I PI3K signaling pathways in a spatiotemporally specific manner.


Assuntos
Imagem Óptica/métodos , Fosfatos de Fosfatidilinositol/fisiologia , Imagem Individual de Molécula/métodos , Animais , Linhagem Celular , Membrana Celular , Humanos , Fosfatos de Inositol , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis , Isoformas de Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
10.
Cell Signal ; 51: 130-138, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092354

RESUMO

Regulation of tyrosine phosphorylation on insulin receptor substrate-1 (IRS-1) is essential for insulin signaling. The protein tyrosine phosphatase (PTP) C1-Ten/Tensin2 has been implicated in the regulation of IRS-1, but the molecular basis of this dephosphorylation is not fully understood. Here, we demonstrate that the cellular phosphatase activity of C1-Ten/Tensin2 on IRS-1 is mediated by the binding of the C1-Ten/Tensin2 Src-homology 2 (SH2) domain to phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). We show that the role of C1-Ten/Tensin2 is dependent on insulin-induced phosphoinositide 3-kinase activity. The C1-Ten/Tensin2 SH2 domain showed strong preference and high affinity for PtdIns(3,4,5)P3. Using site-directed mutagenesis, we identified three basic residues in the C1-Ten/Tensin2 SH2 domain that were critical for PtdIns(3,4,5)P3 binding but were not involved in phosphotyrosine binding and PTP activity. Using a PtdIns(3,4,5)P3 binding-deficient mutant, we showed that the specific binding of the C1-Ten/Tensin2 SH2 domain to PtdIns(3,4,5)P3 allowed C1-Ten/Tensin2 to function as a PTP in cells. Collectively, our findings suggest that the interaction between the C1-Ten/Tensin2 SH2 domain and PtdIns(3,4,5)P3 produces a negative feedback loop of insulin signaling through IRS-1.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Tensinas/química , Tensinas/metabolismo , Domínios de Homologia de src , Animais , Escherichia coli , Células HEK293 , Humanos , Células L , Camundongos , Mutagênese Sítio-Dirigida , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Tensinas/genética
11.
J Cell Biol ; 216(11): 3767-3783, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874417

RESUMO

A unique feature of α-catenin localized outside the cadherin-catenin complex is its capacity to form homodimers, but the subcellular localization and functions of this form of α-catenin remain incompletely understood. We identified a cadherin-free form of α-catenin that is recruited to the leading edge of migrating cells in a phosphatidylinositol 3-kinase-dependent manner. Surface plasmon resonance analysis shows that α-catenin homodimers, but not monomers, selectively bind phosphatidylinositol-3,4,5-trisphosphate-containing lipid vesicles with high affinity, where three basic residues, K488, K493, and R496, contribute to binding. Chemical-induced dimerization of α-catenin containing a synthetic dimerization domain promotes its accumulation within lamellipodia and elaboration of protrusions with extended filopodia, which are attenuated in the α-cateninKKR<3A mutant. Cells restored with a full-length, natively homodimerizing form of α-cateninKKR<3A display reduced membrane recruitment, altered epithelial sheet migrations, and weaker cell-cell adhesion compared with WT α-catenin. These findings show that α-catenin homodimers are recruited to phosphoinositide-activated membranes to promote adhesion and migration, suggesting that phosphoinositide binding may be a defining feature of α-catenin function outside the cadherin-catenin complex.


Assuntos
Adesão Celular , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , alfa Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Cães , Humanos , Células Madin Darby de Rim Canino , Mutação , Fosfatidilinositol 3-Quinase/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Pseudópodes/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , alfa Catenina/genética
12.
J Biol Chem ; 291(34): 17639-50, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27334919

RESUMO

Lymphocyte-specific protein-tyrosine kinase (Lck) plays an essential role in T cell receptor (TCR) signaling and T cell development, but its activation mechanism is not fully understood. To explore the possibility that plasma membrane (PM) lipids control TCR signaling activities of Lck, we measured the membrane binding properties of its regulatory Src homology 2 (SH2) and Src homology 3 domains. The Lck SH2 domain binds anionic PM lipids with high affinity but with low specificity. Electrostatic potential calculation, NMR analysis, and mutational studies identified the lipid-binding site of the Lck SH2 domain that includes surface-exposed basic, aromatic, and hydrophobic residues but not the phospho-Tyr binding pocket. Mutation of lipid binding residues greatly reduced the interaction of Lck with the ζ chain in the activated TCR signaling complex and its overall TCR signaling activities. These results suggest that PM lipids, including phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, modulate interaction of Lck with its binding partners in the TCR signaling complex and its TCR signaling activities in a spatiotemporally specific manner via its SH2 domain.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Humanos , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Mutação de Sentido Incorreto , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatos de Fosfatidilinositol/genética , Receptores de Antígenos de Linfócitos T/genética , Domínios de Homologia de src
13.
Nat Commun ; 6: 8745, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26498860

RESUMO

Vibrio cholerae, responsible for acute gastroenteritis secretes a large multifunctional-autoprocessing repeat-in-toxin (MARTX) toxin linked to evasion of host immune system, facilitating colonization of small intestine. Unlike other effector domains of the multifunctional toxin that target cytoskeleton, the function of alpha-beta hydrolase (ABH) remained elusive. This study demonstrates that ABH is an esterase/lipase with catalytic Ser-His-Asp triad. ABH binds with high affinity to phosphatidylinositol-3-phosphate (PtdIns3P) and cleaves the fatty acid in PtdIns3P at the sn1 position in vitro making it the first PtdIns3P-specific phospholipase A1 (PLA1). Expression of ABH in vivo reduces intracellular PtdIns3P levels and its PtdIns3P-specific PLA1 activity blocks endosomal and autophagic pathways. In accordance with recent studies acknowledging the potential of extracellular pathogens to evade or exploit autophagy to prevent their clearance and facilitate survival, this is the first report highlighting the role of ABH in inhibiting autophagy and endosomal trafficking induced by extracellular V. cholerae.


Assuntos
Autofagia , Toxinas Bacterianas/metabolismo , Cólera/fisiopatologia , Endossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipases A1/metabolismo , Vibrio cholerae/enzimologia , Autofagia/efeitos dos fármacos , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Cólera/metabolismo , Cólera/microbiologia , Endossomos/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Fosfolipases A1/química , Fosfolipases A1/toxicidade , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Vibrio cholerae/fisiologia
14.
Angew Chem Int Ed Engl ; 53(52): 14387-91, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25345859

RESUMO

Lipids regulate a wide range of biological activities. Since their local concentrations are tightly controlled in a spatiotemporally specific manner, the simultaneous quantification of multiple lipids is essential for elucidation of the complex mechanisms of biological regulation. Here, we report a new method for the simultaneous in situ quantification of two lipid pools in mammalian cells using orthogonal fluorescent sensors. The sensors were prepared by incorporating two environmentally sensitive fluorophores with minimal spectral overlap separately into engineered lipid-binding proteins. Dual ratiometric analysis of imaging data allowed accurate, spatiotemporally resolved quantification of two different lipids on the same leaflet of the plasma membrane or a single lipid on two opposite leaflets of the plasma membrane of live mammalian cells. This new imaging technology should serve as a powerful tool for systems-level investigation of lipid-mediated cell signaling and regulation.


Assuntos
Corantes Fluorescentes/química , Animais , Carbofurano/análogos & derivados , Carbofurano/síntese química , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Corantes Fluorescentes/síntese química , Humanos , Lipídeos/química , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Oxazinas/síntese química , Oxazinas/química , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Tempo
15.
Nat Commun ; 3: 1249, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23212378

RESUMO

Cholesterol is known to modulate the physical properties of cell membranes, but its direct involvement in cellular signaling has not been thoroughly investigated. Here we show that cholesterol specifically binds many PDZ domains found in scaffold proteins, including the N-terminal PDZ domain of NHERF1/EBP50. This modular domain has a cholesterol-binding site topologically distinct from its canonical protein-binding site and serves as a dual-specificity domain that bridges the membrane and juxta-membrane signaling complexes. Disruption of the cholesterol-binding activity of NHERF1 largely abrogates its dynamic co-localization with and activation of cystic fibrosis transmembrane conductance regulator, one of its binding partners in the plasma membrane of mammalian cells. At least seven more PDZ domains from other scaffold proteins also bind cholesterol and have cholesterol-binding sites, suggesting that cholesterol modulates cell signaling through direct interactions with these scaffold proteins. This mechanism may provide an alternative explanation for the formation of signaling platforms in cholesterol-rich membrane domains.


Assuntos
Colesterol/fisiologia , Domínios PDZ/fisiologia , Transdução de Sinais/fisiologia , Sítios de Ligação , Canais de Cloreto/fisiologia , Polarização de Fluorescência , Células HEK293/fisiologia , Humanos , Regiões de Interação com a Matriz/fisiologia , Microscopia Confocal , Imagem Molecular , Fosfoproteínas/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia
16.
J Biol Chem ; 287(49): 41268-76, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23043110

RESUMO

Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.


Assuntos
Proteínas de Transporte/biossíntese , Fosfatos de Fosfatidilinositol/química , Fosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Cinética , Lipídeos/química , Camundongos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Neuritos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície/métodos , Proteínas de Transporte Vesicular
17.
J Biol Chem ; 287(36): 30518-28, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22787157

RESUMO

Protein kinase Cθ (PKCθ) is a novel PKC that plays a key role in T lymphocyte activation. To understand how PKCθ is regulated in T cells, we investigated the properties of its N-terminal C2 domain that functions as an autoinhibitory domain. Our measurements show that a Tyr(P)-containing peptide derived from CDCP1 binds the C2 domain of PKCθ with high affinity and activates the enzyme activity of the intact protein. The Tyr(P) peptide also binds the C2 domain of PKCδ tightly, but no enzyme activation was observed with PKCδ. Mutations of PKCθ-C2 residues involved in Tyr(P) binding abrogated the enzyme activation and association of PKCθ with Tyr-phosphorylated full-length CDCP1 and severely inhibited the T cell receptor/CD28-mediated activation of a PKCθ-dependent reporter gene in T cells. Collectively, these studies establish the C2 domain of PKCθ as a Tyr(P)-binding domain and suggest that the domain may play a major role in PKCθ activation via its Tyr(P) binding.


Assuntos
Isoenzimas/química , Peptídeos/química , Fosfotirosina/química , Proteína Quinase C/química , Ativação Enzimática , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação/fisiologia , Fosfotirosina/genética , Fosfotirosina/metabolismo , Ligação Proteica/fisiologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Quinase C-delta/química , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-theta , Estrutura Terciária de Proteína
18.
Prostaglandins Other Lipid Mediat ; 97(1-2): 22-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21821144

RESUMO

Intestinal tumors in Apc(Min/+) mice are suppressed by over-production of HPGDS, which is a glutathione transferase that forms prostaglandin D(2) (PGD(2)). We characterized naturally occurring HPGDS isoenzymes, to see if HPGDS variation is associated with human colorectal cancer risk. We used DNA heteroduplex analysis and sequencing to identify HPGDS variants among healthy individuals. HPGDS isoenzymes were produced in bacteria, and their catalytic activities were tested. To determine in vivo effects, we conducted pooled case-control analyses to assess whether there is an association of the isoenzyme with colorectal cancer. Roughly 8% of African Americans and 2% of Caucasians had a highly stable Val187lle isoenzyme (with isoleucine instead of valine at position 187). At 37°C, the wild-type enzyme lost 15% of its activity in 1h, whereas the Val187Ile form remained >95% active. At 50°C, the half life of native HPGDS was 9min, compared to 42 min for Val187Ile. The odds ratio for colorectal cancer among African Americans with Val187Ile was 1.10 (95% CI, 0.75-1.62; 533 cases, 795 controls). Thus, the Val187Ile HPGDS isoenzyme common among African Americans is not associated with colorectal cancer risk. Other approaches will be needed to establish a role for HPGDS in occurrence of human intestinal tumors, as indicated by a mouse model.


Assuntos
Substituição de Aminoácidos , Negro ou Afro-Americano/genética , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Predisposição Genética para Doença/genética , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Lipocalinas/química , Lipocalinas/genética , Adulto , Animais , Estudos de Casos e Controles , Neoplasias Colorretais/etnologia , Estabilidade Enzimática , Técnicas de Inativação de Genes , Humanos , Oxirredutases Intramoleculares/deficiência , Isoenzimas/química , Isoenzimas/deficiência , Isoenzimas/genética , Camundongos , Modelos Moleculares , Conformação Proteica , Transgenes/genética
19.
Chem Phys Lipids ; 165(2): 207-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22178158

RESUMO

Signaling lipids control many of the most important biological pathways, typically by recruiting cognate protein binding targets to cell surfaces, thereby regulating both their function and subcellular localization. A critical family of signaling lipids is that of the phosphatidylinositol polyphosphates (PIP(n)s), which is composed of seven isomers that vary based on phosphorylation pattern. A key protein that is activated upon PIP(n) binding is Akt, which then plays important roles in regulating the cell cycle, and is thus aberrant in disease. Characterization of protein-PIP(n) binding interactions is hindered by the complexity of the membrane environment and of the PIP(n) structures. Herein, we describe two rapid assays of use for characterizing protein-PIP(n) binding interactions. First, a microplate-based binding assay was devised to characterize the binding of effectors to immobilized synthetic PIP(n) headgroup-biotin conjugates corresponding to all seven isomers. The assay was implemented for simultaneous analysis of Akt-PH domain, indicating PI(3,4,5)P(3) and PI(3,4)P(2) as the primary ligands. In addition, density-dependant studies indicated that the amount of ligand immobilized on the surface affected the amplitude of protein binding, but not the affinity, for Akt-PH. Since the PIP(n) ligand motifs used in this analysis lack the membrane environment and glycerolipid backbone, yet still exhibit high-affinity protein binding, these results narrow down the structural requirements for Akt recognition. Additionally, binding detection was also achieved through microarray analysis via the robotic pin printing of ligands onto glass slides in a miniaturized format. Here, fluorescence-based detection provided sensitive detection of binding using minimal amounts of materials. Due to their high-throughput and versatile attributes, these assays provide invaluable tools for probing and perturbing protein-membrane binding interactions.


Assuntos
Fosfatidilinositóis/metabolismo , Análise Serial de Proteínas/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Humanos , Isomerismo , Fosfatidilinositóis/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/química
20.
Biochemistry ; 50(51): 11143-61, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22074223

RESUMO

Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P3 that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P3 headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P3 headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P3-binding proteins.


Assuntos
Sondas Moleculares/química , Sondas Moleculares/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fosfatos de Fosfatidilinositol/química , Marcadores de Fotoafinidade/química , Marcadores de Fotoafinidade/metabolismo , Alcinos/química , Linhagem Celular Tumoral , Química Click , Corantes Fluorescentes/química , Humanos , Ligantes , Melanoma/enzimologia , Melanoma/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sondas Moleculares/síntese química , Concentração Osmolar , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Marcadores de Fotoafinidade/síntese química , Ligação Proteica , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Solubilidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA