Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Sci Rep ; 14(1): 872, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195632

RESUMO

Recognizing anatomical sections during colonoscopy is crucial for diagnosing colonic diseases and generating accurate reports. While recent studies have endeavored to identify anatomical regions of the colon using deep learning, the deformable anatomical characteristics of the colon pose challenges for establishing a reliable localization system. This study presents a system utilizing 100 colonoscopy videos, combining density clustering and deep learning. Cascaded CNN models are employed to estimate the appendix orifice (AO), flexures, and "outside of the body," sequentially. Subsequently, DBSCAN algorithm is applied to identify anatomical sections. Clustering-based analysis integrates clinical knowledge and context based on the anatomical section within the model. We address challenges posed by colonoscopy images through non-informative removal preprocessing. The image data is labeled by clinicians, and the system deduces section correspondence stochastically. The model categorizes the colon into three sections: right (cecum and ascending colon), middle (transverse colon), and left (descending colon, sigmoid colon, rectum). We estimated the appearance time of anatomical boundaries with an average error of 6.31 s for AO, 9.79 s for HF, 27.69 s for SF, and 3.26 s for outside of the body. The proposed method can facilitate future advancements towards AI-based automatic reporting, offering time-saving efficacy and standardization.


Assuntos
Doenças do Colo , Aprendizado Profundo , Humanos , Colonoscopia , Algoritmos , Análise por Conglomerados
2.
Sci Rep ; 12(1): 261, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997124

RESUMO

Computer-aided detection (CADe) systems have been actively researched for polyp detection in colonoscopy. To be an effective system, it is important to detect additional polyps that may be easily missed by endoscopists. Sessile serrated lesions (SSLs) are a precursor to colorectal cancer with a relatively higher miss rate, owing to their flat and subtle morphology. Colonoscopy CADe systems could help endoscopists; however, the current systems exhibit a very low performance for detecting SSLs. We propose a polyp detection system that reflects the morphological characteristics of SSLs to detect unrecognized or easily missed polyps. To develop a well-trained system with imbalanced polyp data, a generative adversarial network (GAN) was used to synthesize high-resolution whole endoscopic images, including SSL. Quantitative and qualitative evaluations on GAN-synthesized images ensure that synthetic images are realistic and include SSL endoscopic features. Moreover, traditional augmentation methods were used to compare the efficacy of the GAN augmentation method. The CADe system augmented with GAN synthesized images showed a 17.5% improvement in sensitivity on SSLs. Consequently, we verified the potential of the GAN to synthesize high-resolution images with endoscopic features and the proposed system was found to be effective in detecting easily missed polyps during a colonoscopy.


Assuntos
Pólipos do Colo/patologia , Colonoscopia , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer , Interpretação de Imagem Assistida por Computador , Redes Neurais de Computação , Bases de Dados Factuais , Humanos , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
Eur Radiol ; 30(6): 3295-3305, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32055949

RESUMO

OBJECTIVES: To evaluate the deep learning models for differentiating invasive pulmonary adenocarcinomas (IACs) among subsolid nodules (SSNs) considered for resection in a retrospective diagnostic cohort in comparison with a size-based logistic model and expert radiologists. METHODS: This study included 525 patients (309 women; median, 62 years) to develop models, and an independent cohort of 101 patients (57 women; median, 66 years) was used for validation. A size-based logistic model and deep learning models using 2.5-dimension (2.5D) and three-dimension (3D) CT images were developed to discriminate IAC from less invasive pathologies. Overall performance, discrimination, and calibration were assessed. Diagnostic performances of the three thoracic radiologists were compared with those of the deep learning model. RESULTS: The overall performances of the deep learning models (Brier score, 0.122 for the 2.5D DenseNet and 0.121 for the 3D DenseNet) were superior to those of the size-based logistic model (Brier score, 0.198). The area under the receiver operating characteristic curve (AUC) of the 2.5D DenseNet (0.921) was significantly higher than that of the 3D DenseNet (0.835; p = 0.037) and the size-based logistic model (0.836; p = 0.009). At equally high sensitivities of 90%, the 2.5D DenseNet showed significantly higher specificity (88.2%; all p < 0.05) and positive predictive value (97.4%; all p < 0.05) than other models. Model calibration was poor for all models (all p < 0.05). The 2.5D DenseNet had a comparable performance with the radiologists (AUC, 0.848-0.910). CONCLUSION: The 2.5D DenseNet model could be used as a highly sensitive and specific diagnostic tool to differentiate IACs among SSNs for surgical candidates. KEY POINTS: • The deep learning model developed using 2.5D DenseNet showed higher overall performance and discrimination than the size-based logistic model for the differentiation of invasive adenocarcinomas among subsolid nodules for surgical candidates. • The 2.5D DenseNet demonstrated a thoracic radiologist-level diagnostic performance and had higher specificity (88.2%) at equal sensitivities (90%) than the size-based logistic model (specificity, 52.9%). • The 2.5D DenseNet could be used to reduce potential overtreatment for the indolent subsolid nodules or to select candidates for sublobar resection instead of the standard lobectomy.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Aprendizado Profundo , Neoplasias Pulmonares/diagnóstico , Radiografia Torácica/métodos , Radiologistas , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA