Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Anim Biotechnol ; 31(1): 32-41, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30570378

RESUMO

PERV is a major virus concerning xenotransplantation study. However, the interesting part is that PERV is present in all kinds of pigs without pathogenicity and immune response. Furthermore, since pig cells have receptors for PERV, the gene delivery system using PERV envelope is highly likely to develop into an excellent viral vector in pigs. We developed a recombinant baculovirus with a modified surface for expressing the porcine endogenous retrovirus (PERV) envelope. Porcine reproductive and respiratory syndrome virus (PRRSV) infection is a severe concern in the porcine industry due to reproduction failure and respiratory symptoms. GP5 and M proteins are major immunogenic proteins of PRRSV. Using PERV-modified baculovirus (Ac mPERV) as a delivery vector, we constructed a dual antigen (GP5 and M)-encoding DNA vaccine system, Ac mPERV-C5/C6. Intramuscular immunization in mice and pigs, Ac mPERV-C5/C6 induced comparative high humoral and cellular immune responses. Our results support further development of Ac mPERV-C5/C6 as a potential PRRSV vaccine in the porcine industry. In addition, the Ac mPERV system may be applied to the generation of other effective DNA vaccines against porcine viral diseases.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Baculoviridae/genética , Retrovirus Endógenos/genética , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Proteínas Recombinantes , Organismos Livres de Patógenos Específicos , Spodoptera , Suínos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Vacinas Virais/genética
2.
Biochem Biophys Res Commun ; 505(4): 1010-1014, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309651

RESUMO

Zika virus (ZIKV), a mosquito-borne flavivirus that has recently emerged globally, poses a major threat to public health. To control this emerging disease, accurate diagnostics are required for monitoring current ZIKV outbreaks. Owing to the high nucleotide sequence similarity and cross-reactivity of ZIKV with other members of the Flaviviridae family, discrimination from other flavivirus infections is often difficult in endemic areas. ZIKV NS1 induces major virus-specific antibodies and is therefore utilized as a serological marker for ZIKV diagnosis. To identify ZIKV specific epitopes for clinical application, 33 NS1 peptides that are 15-30 amino acid in length covering whole NS1 were synthesized and analyzed linear B-cell epitopes with 38 human serum samples (20 ZIKV-positive and 18 ZIKV-negative). As a result of screening, eight epitope regions were identified. In particular, the Z8 and Z14 peptides located in the ß-ladder surface region showed higher levels of binding activity in ZIKV-positive sera without cross-reactivity to other flaviviruses. These identified sensitive and specific epitopes provide a tool for design of diagnostics and structure-based vaccine antigens for ZIKV infection.


Assuntos
Epitopos de Linfócito B/química , Peptídeos/análise , Zika virus/química , Epitopos de Linfócito B/sangue , Humanos , Modelos Moleculares , Peptídeos/síntese química
3.
J Invertebr Pathol ; 144: 97-105, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28216094

RESUMO

Despite large economic losses attributable to white spot syndrome virus (WSSV), an infectious pathogen of penaeid shrimp and other crustaceans worldwide, no efficient vaccines or antiviral agents to control the virus are available at present. Here, we designed and constructed baculovirus-based vaccines delivering genes encoding the WSSV envelope proteins, VP28 and VP19. To enhance the immunogenicity of the baculovirus-based vaccine, we fused a Salmonella typhimurium flagellin 2 (FL2) gene with VP28 or VP19 gene. Both vaccine constructs elicited similar high titlers of anti-WSSV IgG after oral immunization in mice. The protective effect of oral vaccines upon WSSV challenge was observed in Macrobrachium nipponense. Bivalent vaccine displaying WSSV envelope proteins, VP19 and VP28, led to enhanced more than 10% survival protection against WSSV infection, compared to monovalent vaccine containing WSSV envelope protein, VP19 or VP28. Furthermore, a baculovirus-based WSSV vaccine fused with FL2 gene, Ac-VP28-ie1VP19FL2, efficiently protected mice against WSSV challenge (89.5% survival rate). In support of the efficacy of FL2 in our vaccine, we verified FL2 enhanced survival rate and induced the NF-κB gene in Palaemon paucidens. The collective results strongly suggest that our recombinant baculoviral system displaying WSSV envelope protein and delivering FL2-fused WSSV envelope gene effectively induced protective responses, supporting the utility of a potential new oral DNA vaccine against WSSV.


Assuntos
Penaeidae/virologia , Vacinas Virais , Animais , Flagelina/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/farmacologia , Vírus da Síndrome da Mancha Branca 1
4.
PLoS One ; 11(11): e0165156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832080

RESUMO

Humanized pigs have been developed to reduce the incidence of immune rejection in xenotransplantation, but significant concerns remain, such as transmission of viral zoonosis. Porcine endogenous retroviruses (PERV), which exist in the genome of pigs, are produced as infectious virions from all porcine cells and cause zoonosis. Here, we examined the possibility of zoonosis of hosts under conditions of immune suppression or xenotransplantation of cells producing host-adapted viruses. Upon transplantation of PERV-producing porcine cells into mice, no transmission of PERV was detected, whereas, transmission of PERV from mice transplanted with mouse-adapted PERV-producing cells was detected. In addition, the frequency of PERV transmission was increased in CsA treated mice transplanted with PERV-producing murine cells, compared with PERV-producing porcine cells. Transmission of PERV to host animals did not affect weight but immune responses, in particular, the number of T cells from PERV-transmitted mice, were notably reduced. The observed risk of PERV zoonosis highlights the requirement for thorough evaluation of viral zoonosis under particular host conditions, such as immunosuppressive treatment and transplantation with host-adapted virus-producing cells.


Assuntos
Transplante de Células , Retrovirus Endógenos/genética , Suínos/virologia , Transplante Heterólogo , Zoonoses/genética , Zoonoses/transmissão , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Retrovirus Endógenos/isolamento & purificação , Produtos do Gene env/análise , Genoma Viral , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos NOD , Células NIH 3T3/transplante , Células NIH 3T3/virologia , Suínos/genética , Zoonoses/imunologia , Zoonoses/virologia
5.
J Parasitol Res ; 2015: 361021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26527362

RESUMO

To confirm that Korean Food and Drug Administration (KFDA) guidelines are applicable to test the efficacy of mosquito repellents, these guidelines were used to test the efficacy and complete protection times (CPTs) of three representative mosquito repellents: N,N-diethyl-3-methylbenzamide (DEET), citronella, and fennel oil. The repellency of citronella oil decreased over time, from 97.9% at 0 h to 71.4% at 1 h and 57.7% at 2 h, as did the repellency of fennel oil, from 88.6% at 0 h to 61.2% at 1 h and 47.4% at 2 h. In contrast, the repellency of DEET remained over 90% for 6 h. The CPT of DEET (360 min) was much longer than the CPTs of citronella (10.5 min) and fennel oil (8.4 min). These results did not differ significantly from previous findings, and hence confirm that the KFDA guidelines are applicable for testing the efficacy of mosquito repellents.

6.
PLoS One ; 10(6): e0129761, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090848

RESUMO

INTRODUCTION: The first identification of swine-originated influenza A/CA/04/2009 (pH1N1) as the cause of an outbreak of human influenza accelerated efforts to develop vaccines to prevent and control influenza viruses. The current norm in many countries is to prepare influenza vaccines using cell-based or egg-based killed vaccines, but it is difficult to elicit a sufficient immune response using this approach. To improve immune responses, researchers have examined the use of cytokines as vaccine adjuvants, and extensively investigated their functions as chemoattractants of immune cells and boosters of vaccine-mediated protection. Here, we evaluated the effect of Granulocyte-macrophage Colony-Stimulating Factor (GmCSF) as an influenza vaccine adjuvant in BALB/c mice. METHOD AND RESULTS: Female BALB/c mice were immunized with killed vaccine together with a murine GmCSF gene delivered by human endogenous retrovirus (HERV) envelope coated baculovirus (1 × 10(7) FFU AcHERV-GmCSF, i.m.) and were compared with mice immunized with the killed vaccine alone. On day 14, immunized mice were challenged with 10 median lethal dose of mouse adapted pH1N1 virus. The vaccination together with GmCSF treatment exerted a strong adjuvant effect on humoral and cellular immune responses. In addition, the vaccinated mice together with GmCSF were fully protected against infection by the lethal influenza pH1N1 virus. CONCLUSION: Thus, these results indicate that AcHERV-GmCSF is an effective molecular adjuvant that augments immune responses against influenza virus.


Assuntos
Adjuvantes Imunológicos , Baculoviridae , Retrovirus Endógenos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Vacinas contra Influenza/imunologia , Proteínas do Envelope Viral , Animais , Linhagem Celular , Retrovirus Endógenos/genética , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Imunidade Celular , Imunidade Humoral , Imunização , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes , Proteínas do Envelope Viral/genética
7.
J Microbiol ; 53(6): 415-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26025174

RESUMO

Cervical cancer is strongly associated with chronic human papillomavirus infections, among which HPV16 is the most common. Two commercial HPV vaccines, Gardasil and Cervarix are effective for preventing HPV infection, but cannot be used to treat existing HPV infections. Previously, we developed a human endogenous retrovirus (HERV)-enveloped recombinant baculovirus capable of delivering the L1 genes of HPV types 16, 18, and 58 (AcHERV-HP16/18/58L1, AcHERV-HPV). Intramuscular administration of AcHERVHPV vaccines induced a strong cellular immune response as well as a humoral immune response. In this study, to examine the therapeutic effect of AcHERV-HPV in a mouse model, we established an HPV16 L1 expressing tumor cell line. Compared to Cervarix, immunization with AcHERVHPV greatly enhanced HPV16 L1-specific cytotoxic T lymphocytes (CTL) in C57BL/6 mice. Although vaccination could not remove preexisting tumors, strong CTL activity retarded the growth of inoculated tumor cells. These results indicate that AcHERV-HPV could serve as a potential therapeutic DNA vaccine against concurrent infection with HPV 16, 18, and 58.


Assuntos
Proteínas do Capsídeo/imunologia , Carcinoma/terapia , Portadores de Fármacos , Retrovirus Endógenos/genética , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/uso terapêutico , Vacinas de DNA/uso terapêutico , Animais , Proteínas do Capsídeo/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/imunologia , Linfócitos T Citotóxicos/imunologia , Resultado do Tratamento , Vacinas de DNA/genética , Vacinas de DNA/imunologia
8.
PLoS One ; 10(3): e0119408, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789464

RESUMO

Here, we report the immunogenicity of a sublingually delivered, trivalent human papillomavirus (HPV) DNA vaccine encapsidated in a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus nanovector. The HERV envelope-coated, nonreplicable, baculovirus-based DNA vaccine, encoding HPV16L1, -18L1 and -58L1 (AcHERV-triHPV), was constructed and sublingually administered to mice without adjuvant. Following sublingual (SL) administration, AcHERV-triHPV was absorbed and distributed throughout the body. At 15 minutes and 1 day post-dose, the distribution of AcHERV-triHPV to the lung was higher than that to other tissues. At 30 days post-dose, the levels of AcHERV-triHPV had diminished throughout the body. Six weeks after the first of three doses, 1×10(8) copies of SL AcHERV-triHPV induced HPV type-specific serum IgG and neutralizing antibodies to a degree comparable to that of IM immunization with 1×10(9) copies. AcHERV-triHPV induced HPV type-specific vaginal IgA titers in a dose-dependent manner. SL immunization with 1×10(10) copies of AcHERV-triHPV induced Th1 and Th2 cellular responses comparable to IM immunization with 1×10(9) copies. Molecular imaging revealed that SL AcHERV-triHPV in mice provided complete protection against vaginal challenge with HPV16, HPV18, and HPV58 pseudoviruses. These results support the potential of SL immunization using multivalent DNA vaccine in baculovirus nanovector for induction of mucosal, systemic, and cellular immune responses.


Assuntos
Imunidade Celular/efeitos dos fármacos , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas de DNA/administração & dosagem , Administração Sublingual , Animais , Baculoviridae/genética , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Feminino , Vetores Genéticos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/imunologia , Humanos , Camundongos , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Vacinas de DNA/imunologia , Vagina/efeitos dos fármacos , Vagina/imunologia
9.
PLoS One ; 9(4): e95961, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759938

RESUMO

Previously, we developed a non-replicating recombinant baculovirus coated with human endogenous retrovirus envelope protein (AcHERV) for enhanced cellular delivery of human papillomavirus (HPV) 16L1 DNA. Here, we report the immunogenicity of an AcHERV-based multivalent HPV nanovaccine in which the L1 segments of HPV 16, 18, and 58 genes were inserted into a single baculovirus genome of AcHERV. To test whether gene expression levels were affected by the order of HPV L1 gene insertion, we compared the efficacy of bivalent AcHERV vaccines with the HPV 16L1 gene inserted ahead of the 18L1 gene (AcHERV-HP16/18L1) with that of AcHERV with the HPV 18L1 gene inserted ahead of the 16L1 gene (AcHERV-HP18/16L1). Regardless of the order, the bivalent AcHERV DNA vaccines retained the immunogenicity of monovalent AcHERV-HP16L1 and AcHERV-HP18L1 DNA vaccines. Moreover, the immunogenicity of bivalent AcHERV-HP16/18L1 was not significantly different from that of AcHERV-HP18/16L1. In challenge tests, both bivalent vaccines provided complete protection against HPV 16 and 18 pseudotype viruses. Extending these results, we found that a trivalent AcHERV nanovaccine encoding HPV 16L1, 18L1, and 58L1 genes (AcHERV-HP16/18/58L1) provided high levels of humoral and cellular immunogenicity against all three subtypes. Moreover, mice immunized with the trivalent AcHERV-based nanovaccine were protected from challenge with HPV 16, 18, and 58 pseudotype viruses. These results suggest that trivalent AcHERV-HPV16/18/58L1 could serve as a potential prophylactic baculoviral nanovaccine against concurrent infection with HPV 16, 18, and 58.


Assuntos
Baculoviridae/genética , Proteínas do Capsídeo/genética , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/imunologia , Vacinas de DNA/imunologia , Animais , Baculoviridae/imunologia , Retrovirus Endógenos/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Células Sf9 , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
10.
PLoS One ; 8(11): e80762, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260476

RESUMO

Despite the advantages of DNA vaccines, overcoming their lower efficacy relative to that of conventional vaccines remains a challenge. Here, we constructed a human endogenous retrovirus (HERV) envelope-coated, nonreplicable, baculovirus-based HA vaccine against swine influenza A/California/04/2009(H1N1) hemagglutin (HA) (AcHERV-sH1N1-HA) as an alternative to conventional vaccines and evaluated its efficacy in two strains of mice, BALB/c and C57BL/6. A commercially available, killed virus vaccine was used as a positive control. Mice were intramuscularly administered AcHERV-sH1N1-HA or the commercial vaccine and subsequently given two booster injections. Compared with the commercial vaccine, AcHERV-sH1N1-HA induced significantly higher levels of cellular immune responses in both BALB/c and C57BL/6 mice. Unlike cellular immune responses, humoral immune responses depended on the strain of mice. Following immunization with AcHERV-sH1N1-HA, C57BL/6 mice showed HA-specific IgG titers 10- to 100-fold lower than those of BALB/c mice. In line with the different levels of humoral immune responses, the survival of immunized mice after intranasal challenge with sH1N1 virus (A/California/04/2009) depended on the strain. After challenge with 10-times the median lethal dose (MLD50) of sH1N1 virus, 100% of BALB/c mice immunized with the commercial vaccine or AcHERV-sH1N1-HA survived. In contrast, C57BL/6 mice immunized with AcHERV-sH1N1-HA or the commercial vaccine showed 60% and 70% survival respectively, after challenge with sH1N1 virus. In all mice, virus titers and results of histological analyses of lung tissues were consistent with the survival data. Our results indicate the importance of humoral immune response as a major defense system against influenza viral infection. Moreover, the complete survival of BALB/c mice immunized with AcHERV-sH1N1-HA after challenge with sH1N1 virus suggests the potential of baculoviral vector-based vaccines to achieve an efficacy comparable to that of killed virus vaccines.


Assuntos
Baculoviridae , Retrovirus Endógenos , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Proteínas do Envelope Viral , Animais , Baculoviridae/genética , Baculoviridae/imunologia , Linhagem Celular , Retrovirus Endógenos/genética , Feminino , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Imunidade Celular , Imunidade Humoral , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Pulmão/patologia , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA