Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 220: 173469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36183870

RESUMO

Nicotine, the primary addictive substance in tobacco, produces the psychomotor, rewarding, and reinforcing effects of tobacco dependence by stimulating nicotinic acetylcholine receptors (nAChRs) in the brain. The present study determined that α4ß2 nAChRs regulate locomotor sensitization by altering dopamine concentration in the nucleus accumbens (NAc) after systemic challenge exposure to whole cigarette smoke condensate (WCSC). Rats were administered subcutaneous injection of WCSC (0.2 mg/kg nicotine/day) for 7 consecutive days and then re-exposed to WCSC after 3 days of withdrawal. Challenge exposure to WCSC significantly increased locomotor activity. This increase was decreased by the subcutaneous injection of the α4ß2 nAChR antagonist, DHßE (3 mg/kg), but not by the intraperitoneal injection of the α7 nAChR antagonist, MLA (5 mg/kg). In parallel with a decrease in locomotor activity, blockade of α4ß2 nAChRs with DHßE decreased dopamine concentration in the NAc which was elevated by challenge exposure to WCSC. These findings suggest that challenge WCSC leads to the expression of locomotor sensitization by elevating dopamine concentration via stimulation of α4ß2 nAChRs expressed in neurons of the NAc in rats.


Assuntos
Fumar Cigarros , Receptores Nicotínicos , Animais , Dopamina/metabolismo , Nicotina/farmacologia , Antagonistas Nicotínicos/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Nicotiana , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
2.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142895

RESUMO

Nitric oxide (NO) linked to glutamate receptors in the caudate and putamen (CPu) regulates neuroadaptation after drug exposure. Matrix-metalloproteinase (MMP), a Ca2+-dependent zinc-containing endopeptidase, increases mature brain-derived neurotrophic factor (BDNF) synthesis after drug exposure in the brain. The present study determined that NO synthesis linked to metabotropic glutamate receptor subtype 5 (mGluR5) stimulation after challenge exposure to nicotine activates MMP, which upregulates BDNF synthesis in the CPu. Subcutaneous injection of challenge nicotine (1.0 mg/kg) after repeated injections of nicotine (1.0 mg/kg/day) for 14 days and 7 days of nicotine withdrawal increased MMP2 activity and BDNF expression in the CPu of rats. These increases were prevented by the bilateral intra-CPu infusion of the mGluR5 antagonist, MPEP (0.1 nmol/side), the IP3 receptor antagonist, xestospongin C (0.004 nmol/side) or the neuronal nitric oxide synthase (nNOS) and NO inhibitor, Nω-propyl (0.1 nmol/side) prior to the challenge nicotine. Furthermore, bilateral intra-CPu infusion of the MMP2 inhibitor, OA-Hy (1 nmol/side) prevented the challenge nicotine-induced increase in the expression of BDNF. These findings suggest that elevation of NO synthesis linked to mGluR5 potentiates BDNF synthesis via activation of MMP2 after challenge exposure to nicotine in the CPu of rats.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Nicotina , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Nicotina/farmacologia , Óxido Nítrico , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Putamen/metabolismo , Ratos , Zinco
3.
Int J Neuropsychopharmacol ; 25(8): 678-687, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35678163

RESUMO

BACKGROUND: Phosphorylation of the glutamate receptor (GluA1) subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor plays a crucial role in behavioral sensitization after exposure to psychostimulants. The present study determined the potential role of serine 831 (Ser831) phosphorylation in the GluA1 subunit of the caudate and putamen (CPu) in behavioral sensitization after challenge nicotine. METHODS: Challenge nicotine (0.4 mg/kg) was administered subcutaneously (s.c.) after 7 days of repeated exposure to nicotine (0.4 mg/kg, s.c.) followed by 3 days of withdrawal in rats. Bilateral intra-CPu infusions of drugs were mainly performed to test this hypothesis. RESULTS: Challenge nicotine increased both phosphorylated (p)Ser831 immunoreactivity (IR) and pCa2+/calmodulin-dependentprotein kinases II (pCaMKII)-IR in the medium spiny neurons (MSNs) of the CPu. These increases were prevented by bilateral intra-CPu infusion of the metabotropic glutamate receptor 5 (mGluR5) antagonist MPEP (0.5 nmol/side) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK801 (2 nmol/side). However, the dopamine D1 receptor (D1R) antagonist SCH23390 (7.5 nmol/side) prevented only pSer831-IR alone. Bilateral intra-CPu infusion of the Tat-GluA1D peptide (25 pmol/side), which interferes with the binding of pCaMKII to GluA1-Ser831, decreased the challenge nicotine-induced increase in locomotor activity. CONCLUSIONS: These findings suggest that the GluA1-Ser831 phosphorylation in the MSNs of the CPu is required for the challenge nicotine-induced behavioral sensitization in rats. CaMKII activation linked to mGluR5 and NMDA receptors, but not to D1R, is essential for inducing the CaMKII-Ser831 interaction.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Nicotina , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Nicotina/farmacologia , Fosforilação , Putamen/metabolismo , Ratos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Serina/farmacologia
4.
Nicotine Tob Res ; 24(8): 1201-1207, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35323980

RESUMO

INTRODUCTION: Nicotine increases reinforcing effects of cigarette smoking by upregulating glutamate and dopamine releases via stimulation of nicotinic acetylcholine receptors (nAChRs) in the dorsal striatum (CPu). The present study was conducted to evaluate whether non-nicotine substances in cigarette smoke potentiate nicotine-induced behaviors by increasing glutamate and dopamine concentrations in the CPu. AIMS AND METHODS: Changes in the levels of glutamate and dopamine in the CPu were analyzed using a glutamate colorimetric assay and dopamine enzyme-linked immunosorbent assay, respectively, after repeated administration of nicotine or whole cigarette smoke condensate (WCSC) in male Sprague-Dawley rats. Changes in locomotion and drug-taking behavior were analyzed using the measurements of locomotor activity and self-administration under a fixed ratio 1 schedule in response to repeated administration of nicotine or WCSC. RESULTS: Repeated subcutaneous (s.c.) injections of nicotine (0.25 mg/kg/day) for 7 consecutive days significantly increased the levels of glutamate and dopamine in the CPu. Similar results were obtained from repeated injections of WCSC (0.25 mg/kg nicotine/day, s.c.) extracted from 3R4F Kentucky reference cigarettes. Parallel with the increases in the neurotransmitter levels in the CPu, both nicotine and WCSC increased locomotor activity and self-administration (0.03 mg/kg nicotine/infusion). However, repeated injections of WCSC did not change the nicotine-induced increases in neurotransmitter levels, locomotor activity, and self-administration. CONCLUSIONS: Nicotine rather than non-nicotine substances in WCSC play a major role in potentiating behavioral sensitization and drug-taking behavior via elevation of glutamate and dopamine concentrations in the CPu of rats. IMPLICATIONS: WCSC does not augment the nicotine-induced increases in behavioral sensitization, drug-taking behavior, and glutamate and dopamine concentrations, suggesting that non-nicotine substances do not potentiate the nicotine-induced behaviors by increasing the concentrations of the neurotransmitters in the CPu. These findings imply that nicotine, but not non-nicotine substances in WCSC, may be a major contributor that induces tobacco dependence in rats.


Assuntos
Dopamina , Nicotina , Animais , Glutamatos , Masculino , Nicotina/farmacologia , Ratos , Ratos Sprague-Dawley , Nicotiana
5.
Addict Biol ; 26(2): e12913, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32339332

RESUMO

Intracellular interactions between protein kinases and metabotropic receptors in the striatum regulate behavioral changes in response to drug exposure. We investigated the difference in the degree of interaction between extracellular signal-regulated kinase (ERK) and metabotropic glutamate receptor subtype 5 (mGluR5) in the nucleus accumbens (NAc) after repeated exposure to nicotine in adult and adolescent rats. The results showed that repeated exposure to nicotine (0.5 mg/kg/day, s.c.) for seven consecutive days increased ERK phosphorylation more in adults than in adolescents. Furthermore, membrane expression of mGluR5 in gamma-aminobutyric acid (GABA) medium spiny neurons was higher in adults than adolescents as a result of repeated exposure to nicotine. Blockade of mGluR5 with MPEP (0.5 nmol/side) decreased the repeated nicotine-induced increase in ERK phosphorylation. Either blockade of mGluR5 or inhibition of ERK with SL327 (150 nmol/side) decreased the repeated nicotine-induced increase in the level of inositol-1,4,5-triphosphate (IP3 ), a key transducer associated with mGluR5-coupled signaling cascades. Similarly, interference of binding between activated ERK and mGluR5 by the blocking peptide, Tat-mGluR5-i (2 nmol/side), decreased the repeated nicotine-induced increases in IP3 and locomotor activity in adults. These findings suggest that the intracellular interaction between ERK and mGluR5 in the NAc is stronger in adult than in adolescent rats, which enhances the understanding of age-associated behavioral changes that occur after repeated exposure to nicotine.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Adolescente , Adulto , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Humanos , Masculino , Nicotina/administração & dosagem , Fosforilação , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley
6.
Brain Sci ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374316

RESUMO

Cigarette smoke is a highly complex mixture of nicotine and non-nicotine constituents. Exposure to cigarette smoke enhances tobacco dependence by potentiating glutamatergic neurotransmission via stimulation of nicotinic acetylcholine receptors (nAChRs). We investigated the effects of nicotine and non-nicotine alkaloids in the cigarette smoke condensates extracted from two commercial cigarette brands in South Korea (KCSC A and KCSC B) on psychomotor behaviors and glutamate levels in the dorsal striatum. Repeated and challenge administration of KCSCs (nicotine content: 0.4 mg/kg, subcutaneous) increased psychomotor behaviors (ambulatory, rearing, and rotational activities) and time spent in psychoactive behavioral states compared to exposure to nicotine (0.4 mg/kg) alone. The increase in psychomotor behaviors lasted longer when exposed to repeated and challenge administration of KCSCs compared to nicotine alone. In parallel with sustained increase in psychomotor behaviors, repeated administration of KCSCs also caused long-lasting glutamate release in the dorsal striatum compared to nicotine alone. KCSC-induced changes in psychomotor behaviors and glutamate levels in the dorsal striatum were found to be strongly correlated. These findings suggest that non-nicotine alkaloids in commercial cigarette smoke synergistically act with nicotine on nAChRs, thereby upregulating glutamatergic response in the dorsal striatum, which contributes to the hypersensitization of psychomotor behaviors.

7.
Int J Mol Sci ; 20(12)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208140

RESUMO

Nicotine causes tobacco dependence, which may result in fatal respiratory diseases. The striatum is a key structure of forebrain basal nuclei associated with nicotine dependence. In the striatum, glutamate release is increased when α7 nicotinic acetylcholine receptors expressed in the glutamatergic terminals are exposed to nicotine, and over-stimulates glutamate receptors in gamma amino-butyric acid (GABA)ergic neurons. These receptor over-stimulations in turn potentiate GABAergic outputs to forebrain basal nuclei and contribute to the increase in psychomotor behaviors associated with nicotine dependence. In parallel with glutamate increases, nicotine exposure elevates brain-derived neurotrophic factor (BDNF) release through anterograde and retrograde targeting of the synapses of glutamatergic terminals and GABAergic neurons. This article reviews nicotine-exposure induced elevations of glutamatergic neurotransmission, the bidirectional targeting of BDNF in the striatum, and the potential regulatory role played by BDNF in behavioral responses to nicotine exposure.


Assuntos
Comportamento , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Nicotina/administração & dosagem , Transmissão Sináptica , Animais , Ácido Glutâmico/biossíntese , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Fatores de Crescimento Neural/metabolismo , Receptor trkB/metabolismo , Receptores de Glutamato/metabolismo , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/agonistas
8.
Front Behav Neurosci ; 12: 47, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615877

RESUMO

Nicotine, a nicotinic acetylcholine receptor agonist, produces the reinforcing effects of tobacco dependence by potentiating dopaminergic and glutamatergic neurotransmission. Non-nicotine alkaloids in tobacco also contribute to dependence by activating the cholinergic system. However, glutamatergic neurotransmission in the dorsal striatum associated with behavioral changes in response to cigarette smoking has not been investigated. In this study, the authors investigated alterations in glutamate levels in the rat dorsal striatum related to behavioral alterations after repeated administration of cigarette smoke condensate (CSC) using the real-time glutamate biosensing and an open-field behavioral assessment. Repeated administration of CSC including 0.4 mg nicotine (1.0 mL/kg/day, subcutaneous) for 14 days significantly increased extracellular glutamate concentrations more than repeated nicotine administration. In parallel with the hyperactivation of glutamate levels, repeated administration of CSC-evoked prolonged hypersensitization of psychomotor activity, including locomotor and rearing activities. These findings suggest that the CSC-induced psychomotor activities are closely associated with the elevation of glutamate concentrations in the rat dorsal striatum.

9.
Sci Rep ; 7(1): 15009, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118361

RESUMO

Neurochemical alterations associated with behavioral responses induced by re-exposure to nicotine have not been sufficiently characterized in the dorsal striatum. Herein, we report on changes in glutamate concentrations in the rat dorsal striatum associated with behavioral alterations after nicotine challenge. Nicotine challenge (0.4 mg/kg/day, subcutaneous) significantly increased extracellular glutamate concentrations up to the level observed with repeated nicotine administration. This increase occurred in parallel with an increase in behavioral changes in locomotor and rearing activities. In contrast, acute nicotine administration and nicotine withdrawal on days 1 and 6 did not alter glutamate levels or behavioral changes. Blockade of α7 nicotinic acetylcholine receptors (nAChRs) significantly decreased the nicotine challenge-induced increases in extracellular glutamate concentrations and locomotor and rearing activities. These findings suggest that behavioral changes in locomotor and rearing activities after re-exposure to nicotine are closely associated with hyperactivation of the glutamate response by stimulating α7 nAChRs in the rat dorsal striatum.


Assuntos
Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Ácido Glutâmico/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/farmacologia , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/fisiopatologia
10.
J Toxicol Environ Health A ; 80(10-12): 533-541, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854057

RESUMO

The purpose of the current study was to investigate the effect of two commercial cigarette smoke condensates (CCSC) on oxidative stress and cell cytotoxicity in human brain (T98G) or astrocytes (U-373 MG) in the presence of human brain microvascular endothelial cells (HBMEC). Cell viability of mono-culture of T98G or U-373 MG was markedly decreased in a concentration-dependent manner, and T98G was more susceptible than U-373 MG to CCSC exposure. Cytotoxicity was less prominent when T98G was co-cultured with HBMEC than when T98G was co-cultured with U-373 MG. Significant reduction in trans-epithelial electric resistance (TEER), a biomarker of cellular integrity was noted in HBMEC co-cultured with T98G (HBMEC-T98G co-culture) and U-373 MG co-cultured with T98G (U-373 MG-T98G co-culture) after 24 or 48 hr CCSC exposure, respectively. TEER value of U-373 MG co-cultured with T98G (79-84%) was higher than HBMEC co-cultured with T98G (62-63%) within 120-hr incubation with CCSC. Reactive oxygen species (ROS) generated by CCSC in mono-culture of T98G and U-373 MG reached highest levels at 4 and 16 mg/ml, respectively. ROS production by T98G fell when co-cultured with HBMEC or U-373MG. These findings suggest that adverse consequences of CCSC treatment on brain cells may be protected by blood-brain barrier or astrocytes, but with chronic exposure toxicity may be worsened due to destruction of cellular integrity.


Assuntos
Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça/efeitos adversos , Astrócitos/citologia , Encéfalo/citologia , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Humanos
11.
Toxicol Ind Health ; 33(6): 530-536, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28125953

RESUMO

Brain tissue is known to be vulnerable to the exposure by tobacco smoke. Tobacco smoke can induce generation of reactive oxygen species (ROS), causing inflammatory activity and blood-brain barrier (BBB) impairment. The aim of the present study was to investigate the effect of tobacco smoke on cell cytotoxicity, generation of ROS, and cellular membrane damage in astrocytes and BBB using a co-culture system. Cell viability of U373MG cells was reduced in a dose-dependent manner, ranging from 96.7% to 40.3% by tobacco smoke condensate (TSC). Cell viability of U373MG co-cultured with human brain microvascular endothelial cells (HBMECs) was 104.9% at the IC50 value of TSC. Trans-epithelial electric resistance values drastically decreased 80% following 12-h incubation. The value was maintained until 48 h and then increased at 72-h incubation (85%). It then decreased to 75% at 120 h. Generation of ROS increased in a dose-dependent manner, ranging from 102.7% to 107.9%, when various concentrations of TSC (4-16 mg/mL) were administered to the U373MG monoculture. When TSC was added into U373MG co-cultured with HBMECs, production of ROS ranged from 101.7% to 102.6%, slightly increasing over 12 h. Maximum exposure-generated ROS of 104.8% was reached at 24 h. Cell cytotoxicity and oxidative stress levels in the U373MG co-culture model system with HBMECs were lower than U373MG monoculture. HBMECs effectively acted as a barrier to protect the astrocytes (U373MG) from toxicity of TSC.


Assuntos
Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Nicotiana/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Encéfalo/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
12.
Behav Brain Res ; 306: 197-201, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26996314

RESUMO

Although it is widely accepted that nicotine plays a key role in tobacco dependence, nicotine alone cannot account for all of the pharmacological effects associated with cigarette smoke found in preclinical models. Thus, the present study aimed to determine the differential effects of the interoceptive cues of nicotine alone versus those of cigarette smoke condensate (CSC) in nicotine-trained rats. First, the rats were trained to discriminate nicotine (0.4mg/kg, subcutaneous [s.c.]) from saline in a two-lever drug discrimination paradigm. Then, to clarify the different neuropharmacological mechanisms underlying the discriminative-stimulus effects in the nicotine and CSC in nicotine-trained rats, either the α4ß2 nicotinic acetylcholine receptor (nAChR) antagonist dihydro-ß-erythroidine (DHßE; 0.3-1.0mg/kg, s.c.) or the α7 nAChR antagonist methyllycaconitine citrate (MLA; 5-10mg/kg, intraperitoneal [i.p.]) was administered prior to the injection of either nicotine or CSC. Separate set of experiments was performed to compare the duration of action of the discriminative-stimulus effects of CSC and nicotine. CSC exhibited a dose-dependent nicotine generalization, and interestingly, 1.0mg/kg of DHßE antagonized the discriminative effects of nicotine (0.4mg/kg) but not CSC (0.4mg/kg nicotine content). However, pretreatment with MLA had no effect. In the time-course study, CSC had a relatively longer half-life in terms of the discriminative-stimulus effects compared with nicotine alone. Taken together, the present findings indicate that CSC has a distinct influence on interoceptive effects relative to nicotine alone and that these differential effects might be mediated, at least in part, by the α4ß2, but not the α7, nAChR.


Assuntos
Aprendizagem por Discriminação/efeitos dos fármacos , Discriminação Psicológica/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Di-Hidro-beta-Eritroidina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Fumar/psicologia , Fatores de Tempo
13.
Int J Neuropsychopharmacol ; 18(12)2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26142455

RESUMO

BACKGROUND: Phosphorylation state of dopamine- and cAMP-regulated phosphoprotein, molecular weight 32 kDa (DARPP32) is crucial to understand drug-mediated synaptic plasticity. In this study, mechanisms underlying repeated cocaine-stimulated phosphorylation of DARPP32 at threonine 75 (pDARPP32-Thr75) were determined by investigating the hypothesis that activation of protein kinases and phosphatases coupled to glutamate signaling is necessary for the regulation of pDARPP32-Thr75 after repeated cocaine administration. METHODS: Intracaudate drug infusions into the rat dorsal striatum followed by Western immunoblot analysis were mainly performed to test this hypothesis. RESULTS: The results demonstrated that 7 repeated daily intraperitoneal injections of cocaine (20mg/kg) upregulated the expression of pDARPP32-Thr75. Increases in the cytosolic Ca(2+) concentrations followed by Ca(2+)-dependent protein kinase activation through stimulation of Ca(2+) channels in striatal neurons were necessary for the phosphorylation. Activation of protein phosphatases further regulated the phosphorylation state by deactivating pDARPP32-Thr75 and upstream protein kinases. CONCLUSION: These findings suggest that activation of protein kinases and phosphatases coupled to glutamate receptors controls the phosphorylation state of DARPP32-Thr75 after repeated exposure to cocaine in the dorsal striatum in a Ca(2+)-dependent manner.


Assuntos
Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Animais , Canais de Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Corpo Estriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Masculino , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Receptores de Glutamato/metabolismo , Canais de Sódio/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Exp Brain Res ; 233(5): 1511-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25702161

RESUMO

We previously found that the dopamine D2-type receptors (D2 and D3 receptors), coupled to protein kinase G (PKG), upregulate locomotor activity after repeated cocaine administration. In this study, D4 receptors, another type of D2 receptor also coupled to PKG, were examined to determine their requirement in the regulation of locomotor activity after repeated cocaine administration. The results demonstrated that repeated injections of cocaine (20 mg/kg), given once a day for seven consecutive days, significantly increased extracellular dopamine concentrations. Intra-caudate infusion of the D4 receptor agonist, PD168077 (10 nmol), and the PKG inhibitor, KT5823 (2 nmol), significantly decreased the repeated cocaine-induced increase in dopamine levels and locomotor activity. However, intra-caudate infusion of KT5823, but not PD168077, decreased ∆FosB immunoreactivity elevated by repeated cocaine administration. These findings suggest that D4 receptors linked to PKG could be a key modulator for dopamine release required for changes in locomotor activity caused by repeated cocaine exposure.


Assuntos
Cocaína/administração & dosagem , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Receptores de Dopamina D4/metabolismo , Análise de Variância , Animais , Benzamidas/farmacologia , Carbazóis/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/genética , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo I/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D4/genética , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Neurochem Res ; 38(7): 1424-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23585124

RESUMO

Protein kinase G (PKG) activation has been implicated in the regulation of synaptic plasticity in the brain. This study was conducted to determine the involvement of PKG-associated dopamine D2 (D2) receptors in the regulation of dopamine release, ΔFosB expression and locomotor activity in response to repeated cocaine exposure. Repeated systemic injections of cocaine (20 mg/kg), once a day for seven consecutive days, increased cyclic guanosine monophosphate (cGMP) and extracellular dopamine concentrations in the dorsal striatum. Inhibition of neuronal nitric oxide synthase (nNOS), cGMP or PKG and stimulation of D2 receptors decreased the repeated cocaine-induced increase in dopamine concentrations. Similar results were obtained by the combining nNOS, cGMP or PKG inhibition with stimulation of D2 receptors. Parallel to these data, PKG inhibition, D2 receptor stimulation, and combining PKG inhibition with stimulation of D2 receptors decreased the repeated cocaine-induced increases in ΔFosB expression and locomotor activity. These findings suggest that control of D2 receptors by PKG activation after repeated cocaine is responsible for upregulating dopamine release and sustained long-term changes in gene expression in the dopamine terminals and gamma-aminobutyric acid neurons of the dorsal striatum, respectively. This upregulation may contribute to behavioral changes in response to repeated exposure to cocaine.


Assuntos
Cocaína/administração & dosagem , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Dopamina/metabolismo , Locomoção , Receptores de Dopamina D2/fisiologia , Animais , GMP Cíclico/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos , Ratos , Ratos Sprague-Dawley
16.
Neurosci Lett ; 541: 120-5, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23428510

RESUMO

Protein kinase G (PKG) has been implicated in a variety of physiological functions including synaptic plasticity in the brain. This study investigated the involvement of dopamine D3 (D3) receptors in PKG-regulated dopamine release, long-term changes in gene expression and behavioral sensitization after repeated cocaine administration. Repeated systemic injections of cocaine (20mg/kg), once a day for seven consecutive days, increased extracellular dopamine concentrations in the dorsal striatum. Inhibition of neuronal nitric oxide synthase, cGMP or PKG, stimulation of D3 receptors, and simultaneous inhibition of each of them with D3 receptor stimulation decreased the repeated cocaine-induced increase in dopamine concentrations and locomotor activity. Similarly, inhibition of PKG and simultaneous inhibition of PKG with D3 receptor stimulation decreased ΔFosB immunoreactivity elevated by repeated cocaine administration, however stimulation of D3 receptors alone did not. These findings suggest that activation of PKG after repeated cocaine administration is more sensitive to interact with D3 receptors in the dopamine terminals than those in medium spiny neurons. This interaction may result in the development of behavioral sensitization by the upregulation of dopamine releases in the dorsal striatum.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Técnicas Biossensoriais , Corpo Estriado/metabolismo , GMP Cíclico/antagonistas & inibidores , Proteína Quinase Dependente de GMP Cíclico Tipo I/antagonistas & inibidores , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Ativação Enzimática , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D3/agonistas , Receptores Pré-Sinápticos/agonistas , Receptores Pré-Sinápticos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
17.
Environ Toxicol Pharmacol ; 33(3): 403-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22387352

RESUMO

The effects of a mixture of carcinogenic polycyclic aromatic hydrocarbons (cPAHs) on transcriptional responses in the liver of medaka, Oryzias latipes, were investigated by identifying differentially expressed genes (DEGs). Five DEGs were identified as cytochrome P450 2P1 (CYP450 2P1), malate dehydrogenase, anti-thrombin III, NADH dehydrogenase subunit 4, and transferrin. These DEGs were quantified by real-time polymerase chain reaction. Only CYP450 2P1 mRNA was found to be upregulated by exposure to cPAHs mixture, suggesting that CYP450 2P1 mRNA can be a potential marker for prediction of the biological effects of a mixture of cPAHs on fish.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Oryzias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Proteínas de Peixes/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
Front Neuroanat ; 5: 19, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21441996

RESUMO

Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein-protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.

19.
Neurosci Lett ; 468(2): 125-9, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19879923

RESUMO

Protein phosphorylation caused by drug administration is a critical step in the regulation of behavioral alterations. This study was conducted to determine how repeated exposure to cocaine phosphorylates B-cell leukemia/lymphoma 2 (Bcl2), which may be responsible for the regulation of behavioral alterations in the rat dorsal striatum. The results revealed that repeated systemic injections of cocaine (20 mg/kg) once a day for 7 consecutive days increased the phosphorylation of Bcl2 at serine 70 (Bcl2-S70). However, this increase was reduced by the blockade of dopamine D1 receptors, group I metabotropic glutamate receptors (mGluRs), and N-methyl-D-aspartate (NMDA) receptors. In addition, elevation of behavioral locomotor activity after repeated exposure to cocaine was partially reduced by the inhibition of Bcl2. These data suggest that stimulation of dopamine D1 receptors, group I mGluRs, and NMDA receptors following repeated cocaine administration is necessary for the induction of Bcl2-S70 phosphorylation, which contributes to the expression of behavioral sensitization.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Corpo Estriado/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Receptores de N-Metil-D-Aspartato/agonistas
20.
Psychopharmacology (Berl) ; 208(2): 245-56, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19936712

RESUMO

RATIONALE: Repeated injections of cocaine alter extracellular nitric oxide (NO) efflux via interactions between dopamine and glutamate receptor-coupled signaling cascades. OBJECTIVES: Putative cellular mechanisms underlying changes in NO efflux following repeated cocaine administration were investigated. METHODS: Real-time detection of NO efflux using a NO biosensor was mainly performed in the rat dorsal striatum in vivo. RESULTS: Repeated exposure to cocaine (20 mg/kg), once a day for seven consecutive days, increased NO levels. Repeated injections of cocaine also increased the phosphorylation of neuronal nitric oxide synthase (nNOS), and inhibition of nNOS decreased the repeated cocaine-evoked increases in NO levels. Inhibition of protein kinase A, but not protein phosphatases, synergistically increased NO levels elevated by repeated cocaine injections. Blockade of dopamine D1 (D1) receptors or stimulation of dopamine D2 (D2) receptors decreased the repeated cocaine-evoked increases in NO levels. Similarly, blockade of N-methyl-D: -aspartate (NMDA) receptors and group I metabotropic glutamate receptors (mGluRs) or stimulation of group III mGluRs also decreased the repeated cocaine-evoked increases in NO levels. CONCLUSION: Stimulation of D1 receptors or group I mGluRs following repeated cocaine administration upregulates NO efflux via an NMDA receptor-evoked Ca2+ influx, while stimulation of D2 receptors or group III mGluRs downregulates NO efflux. Dephosphorylation of phosphorylated nNOS by protein phosphatases is necessary for upregulating NO efflux in the dorsal striatum after repeated cocaine administration.


Assuntos
Gânglios da Base/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Óxido Nítrico/metabolismo , Animais , Gânglios da Base/metabolismo , Técnicas Biossensoriais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Infusões Parenterais , Masculino , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA