Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Apoptosis ; 24(1-2): 200-203, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30390185

RESUMO

The original version of this article contained mistakes in figures. The western blot data for pro-caspase-3 and cleaved caspase-3 (Fig. 1d), ß-actin (Fig. 1d), PLCγ1 (Fig. 5d), and eIF2α (Fig. 7d) are incorrect. The corrected Figs. 1d, 5d, and 7d are shown below. The corrections do not influence either the validity of the published data or the conclusion described in the article.

4.
Apoptosis ; 24(1-2): 198-199, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30390184

RESUMO

The original version of this article contained a mistake in the figure. The Ca2 + confocal image for the 2-APB/Apicidin-120 min in Fig. 5d is incorrect. The correction does not influence either the validity of the published data or the conclusion described in the article. The corrected Fig. 5d is given below.

6.
Apoptosis ; 19(4): 682-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24337903

RESUMO

Licochalcone A (LicA), an estrogenic flavonoid, induces apoptosis in multiple types of cancer cells. In this study, the molecular mechanisms underlying the anti-cancer effects of LicA were investigated in HepG2 human hepatocellular carcinoma cells. LicA induced apoptotic cell death, activation of caspase-4, -9, and -3, and expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by CHOP knockdown or treatment with the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced LicA-induced cell death. LicA also induced reactive oxygen species (ROS) accumulation and the anti-oxidant N-acetylcysteine reduced LicA-induced cell death and CHOP expression. In addition, LicA increased the levels of cytosolic Ca(2+), which was blocked by 2-aminoethoxydiphenyl borate (an antagonist of inositol 1,4,5-trisphosphate receptor) and BAPTA-AM (an intracellular Ca(2+) chelator). 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited LicA-induced cell death. Interestingly, LicA induced phosphorylation of phospholipase Cγ1 (PLCγ1) and inhibition of PLCγ1 reduced cell death and ER stress. Moreover, the multi-targeted receptor tyrosine kinase inhibitors, sorafenib and sunitinib, reduced LicA-induced cell death, ER stress, and cytosolic Ca(2+) and ROS accumulation. Finally, LicA induced phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and c-Met receptor and inhibition of both receptors by co-transfection with VEGFR2 and c-Met siRNAs reversed LicA-induced cell death, Ca(2+) increase, and CHOP expression. Taken together, these findings suggest that induction of ER stress via a PLCγ1-, Ca(2+)-, and ROS-dependent pathway may be an important mechanism by which LicA induces apoptosis in HepG2 hepatocellular carcinoma cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Chalconas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
7.
Apoptosis ; 17(12): 1340-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22926926

RESUMO

Apicidin, a fungal metabolite that functions as a histone deacetylase inhibitor, induces apoptosis in cancer cells. We investigated the molecular mechanisms of the anti-cancer effects of apicidin in mouse Neuro-2a neuroblastoma cells. Apicidin induced apoptotic cell death and activation of caspase-12, -9, and -3. Apicidin induced expression of endoplasmic reticulum (ER) stress-associated proteins, including CCAAT/enhancer binding protein homologous protein (CHOP), cleavage of activating transcription factor 6α, and phosphorylation of eukaryotic initiation factor 2α. Inhibition of ER stress by CHOP knockdown or using the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced apicidin-induced cell death. Apicidin induced reactive oxygen species accumulation and mitochondrial membrane potential loss. An antioxidant, N-acetyl cysteine, reduced apicidin-induced cell death, CHOP expression, and mitochondrial dysfunction. In addition, apicidin increased cytosolic Ca(2+), which was blocked by 2-aminoethoxydiphenyl borate, an antagonist of inositol 1,4,5-trisphosphate receptor, and BAPTA-AM, an intracellular Ca(2+) chelator. 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited apicidin-induced cell death and ER stress. Interestingly, apicidin induced phosphorylation of phospholipase Cγ1 (PLCγ1) and epidermal growth factor receptor (EGFR), and inhibition of PLCγ1 and EGFR reduced cell death and ER stress. Finally, apicidin-induced histone H3 hyperacetylation and reduction of histone deacetylase 2 mRNA expression were not affected by either a PLCγ1 inhibitor, U73122, or the antioxidant, N-acetyl cysteine. Taken together, the results suggest that apicidin induces apoptosis by ER stress and mitochondrial dysfunction via PLCγ1 activation, Ca(2+) release, and reactive oxygen species accumulation in Neuro-2a neuroblastoma cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Peptídeos Cíclicos/farmacologia , Fosfolipase C gama/metabolismo , Animais , Camundongos , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/fisiopatologia , Fosfolipase C gama/genética , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
8.
Cell Signal ; 24(6): 1195-207, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22330070

RESUMO

AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis, is known to be activated during T cell activation. T cell activation by T cell receptor (TCR) engagement or its pharmacological mimics, PMA plus ionomycin (PMA/Io), induces immunomodulatory FasL and cyclooxygenase-2 (COX-2) expression. In this study, we examined the role and mechanisms of AMPK in PMA/Io-induced expression of FasL and COX-2 in Jurkat T human leukemic cells. Inhibition of AMPK by a pharmacological agent, compound C, or AMPKα1 siRNA suppressed expression of FasL and COX-2 mRNAs and proteins in PMA/Io-activated Jurkat cells. It also reduced secretion of FasL protein and prostaglandin E2, a main product of COX-2, in Jurkat cells and peripheral blood lymphocytes activated with PMA/Io or monoclonal anti-CD3 plus anti-CD28. Consistently, inhibition of AMPK blocked promoter activities of FasL and COX-2 in activated Jurkat cells. As protein kinase C theta (PKCθ) is a central molecule for TCR signaling, we examined any possible cross-talk between AMPK and PKCθ in activated T cells. Of particular importance, we found that inhibition of AMPK blocked phosphorylation and activation of PKCθ, suggesting that AMPK is an upstream kinase of PKCθ. Moreover, we showed that AMPK was directly associated with PKCθ and phosphorylated Thr538 of PKCθ in PMA/Io-stimulated Jurkat cells. We also showed that inhibition of PKCθ by rottlerin or dominant negative PKCθ reduced AMPK-mediated transcriptional activation of NF-AT and AP-1 in activated Jurkat cells. Taken together, these results suggest that AMPK regulates expression of FasL and COX-2 via the PKCθ and NF-AT and AP-1 pathways in activated Jurkat cells.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Ciclo-Oxigenase 2/genética , Proteína Ligante Fas/genética , Isoenzimas/imunologia , Ativação Linfocitária , Proteína Quinase C/imunologia , Linfócitos T/citologia , Regulação da Expressão Gênica , Humanos , Células Jurkat , Proteína Quinase C-theta , Transdução de Sinais , Linfócitos T/imunologia
9.
Eur J Pharmacol ; 668(1-2): 115-26, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21762691

RESUMO

Luteolin, a dietary flavonoid, induces apoptosis in various types of cancer cells. However, its role in neuroblastoma and the underlying mechanisms remain to be elucidated. In the present study, we investigated the molecular mechanisms of the anti-cancer effect of luteolin in Neuro-2a mouse neuroblastoma cells. Luteolin induced apoptotic cell death and activation of caspase-12, -9, and -3, and knockdown of caspase-12 by siRNA transfection reduced luteolin-induced cell death. Luteolin also induced expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP) and glucose-regulated proteins (GRP) 94 and 78, cleavage of ATF6α, and phosphorylation of eIF2α. CHOP knockdown or ER stress inhibitor, 4-phenylbutyric acid, reduced luteolin-induced cell death. These results suggest involvement of ER stress in luteolin-induced neuroblastoma cell death. We then showed that luteolin induced accumulation of reactive oxygen species and that the anti-oxidant N-acetylcysteine reduced luteolin-induced cell death and expression of CHOP and GRP78. We also demonstrated rapid reduction of mitochondrial membrane potential by luteolin, and N-acetylcysteine, as well as 4-phenylbutyric acid or CHOP siRNA transfection ameliorated luteolin-induced late loss, but not early loss of mitochondrial membrane potential. Finally, we showed that luteolin induced activation of mitogen-activated protein kinases such as JNK, p38, and ERK, and inhibitors of mitogen-activated protein kinases reduced luteolin-induced cell death and CHOP expression, as well as mitochondrial Bax translocation and cytochrome c release. Collectively, our results suggest that luteolin induces apoptosis through ER stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Luteolina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neuroblastoma/patologia , Animais , Caspases/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Clin Exp Otorhinolaryngol ; 3(2): 59-64, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20607073

RESUMO

OBJECTIVES: To evaluate that the cross-sectional area of the air space in the Eustachian tube (ET) on computed tomography (CT) images could be useful for predicting the postoperative aeration of the middle ear. METHODS: The patient group consisted of 80 patients (80 ears) with chronic otitis media and who underwent middle ear surgery from 2006-2007 and who were followed up for more than 1 yr. The control group consisted of 100 ears of 50 individuals with normal tympanic membranes and who underwent CT for other causes (such as tinnitus or hearing loss). The largest cross-sectional areas of the aerated ET were measured on the coronal images of the temporal bone CT by a single otologist using the computer-based "Region of Interest" picture archiving and communications system. The patient group was divided into two subgroups, 1) those with good postoperative aeration and 2) those with poor postoperative aeration. The largest cross-sectional areas of the aerated ETs were compared between the patients and the controls, and between the patients with good aeration and the patients with poor aeration. RESULTS: The mean cross-sectional areas significantly differed between the patient group and the control group, and between the good and poor aeration subgroups (P<0.05 each). The mean area of the poor aeration subgroup was smaller than that of the control group (P<0.05), but the mean area of the good aeration subgroup did not significantly differ from that of the controls. CONCLUSION: The cross-sectional area of the aerated ET, as measured on the preoperative coronal images of temporal bone CT scans, may be useful for predicting the postoperative condition of the tympanic cavity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA