Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 46(8): 473-475, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37587750

Assuntos
NAD , Neoplasias , Humanos
2.
Exp Mol Med ; 55(6): 1218-1231, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37258579

RESUMO

The signaling pathways governing acetaminophen (APAP)-induced liver injury have been extensively studied. However, little is known about the ubiquitin-modifying enzymes needed for the regulation of APAP-induced liver injury. Here, we examined whether the Pellino3 protein, which has E3 ligase activity, is needed for APAP-induced liver injury and subsequently explored its molecular mechanism. Whole-body Peli3-/- knockout (KO) and adenovirus-mediated Peli3 knockdown (KD) mice showed reduced levels of centrilobular cell death, infiltration of immune cells, and biomarkers of liver injury, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), upon APAP treatment compared to wild-type (WT) mice. Peli3 deficiency in primary hepatocytes decreased mitochondrial and lysosomal damage and reduced the mitochondrial reactive oxygen species (ROS) levels. In addition, the levels of phosphorylation at serine 9 in the cytoplasm and mitochondrial translocation of GSK3ß were decreased in primary hepatocytes obtained from Peli3-/- KO mice, and these reductions were accompanied by decreases in JNK phosphorylation and mitochondrial translocation. Pellino3 bound more strongly to GSK3ß compared with JNK1 and JNK2 and induced the lysine 63 (K63)-mediated polyubiquitination of GSK3ß. In rescue experiments, the ectopic expression of wild-type Pellino3 in Peli3-/- KO hepatocytes restored the mitochondrial translocation of GSK3ß, but this restoration was not obtained with expression of a catalytically inactive mutant of Pellino3. These findings are the first to suggest a mechanistic link between Pellino3 and APAP-induced liver injury through the modulation of GSK3ß polyubiquitination.


Assuntos
Acetaminofen , Doença Hepática Crônica Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/efeitos adversos , Fosforilação , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Endogâmicos C57BL
3.
Mol Metab ; 55: 101402, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838715

RESUMO

OBJECTIVE: Diet-induced obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which instigates severe metabolic disorders, including cirrhosis, hepatocellular carcinoma, and type 2 diabetes. We have shown that hepatic depletion of CREB regulated transcription co-activator (CRTC) 2 protects mice from the progression of diet-induced fatty liver phenotype, although the exact mechanism by which CRTC2 modulates this process is elusive to date. Here, we investigated the role of hepatic CRTC2 in the instigation of NAFLD in mammals. METHODS: Crtc2 liver-specific knockout (Crtc2 LKO) mice and Crtc2 flox/flox (Crtc2 f/f) mice were fed a high fat diet (HFD) for 7-8 weeks. Body weight, liver weight, hepatic lipid contents, and plasma triacylglycerol (TG) levels were determined. Western blot analysis was performed to determine Sirtuin (SIRT) 1, tuberous sclerosis complex (TSC) 2, and mammalian target of rapamycin complex (mTORC) 1 activity in the liver. Effects of Crtc2 depletion on lipogenesis was determined by measuring lipogenic gene expression (western blot analysis and qRT-PCR) in the liver as well as Oil red O staining in hepatocytes. Effects of miR-34a on mTORC1 activity and hepatic lipid accumulation was assessed by AAV-miR-34a virus in mice and Ad-miR-34a virus and Ad-anti-miR-34a virus in hepatocytes. Autophagic flux was assessed by western blot analysis after leupeptin injection in mice and bafilomycin treatment in hepatocytes. Lipophagy was assessed by transmission electron microscopy and confocal microscopy. Expression of CRTC2 and p-S6K1 in livers of human NAFLD patients was assessed by immunohistochemistry. RESULTS: We found that expression of CRTC2 in the liver is highly induced upon HFD-feeding in mice. Hepatic depletion of Crtc2 ameliorated HFD-induced fatty liver disease phenotypes, with a pronounced inhibition of the mTORC1 pathway in the liver. Mechanistically, we found that expression of TSC2, a potent mTORC1 inhibitor, was enhanced in Crtc2 LKO mice due to the decreased expression of miR-34a and the subsequent increase in SIRT1-mediated deacetylation processes. We showed that ectopic expression of miR-34a led to the induction of mTORC1 pathway, leading to the hepatic lipid accumulation in part by limiting lipophagy and enhanced lipogenesis. Finally, we found a strong association of CRTC2, miR-34a and mTORC1 activity in the NAFLD patients in humans, demonstrating a conservation of signaling pathways among species. CONCLUSIONS: These data collectively suggest that diet-induced activation of CRTC2 instigates the progression of NAFLD by activating miR-34a-mediated lipid accumulation in the liver via the simultaneous induction of lipogenesis and inhibition of lipid catabolism. Therapeutic approach to specifically inhibit CRTC2 activity in the liver could be beneficial in combating NAFLD in the future.


Assuntos
Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Autofagia/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Fatores de Transcrição/genética
4.
Cell Mol Gastroenterol Hepatol ; 12(5): 1761-1787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34358714

RESUMO

BACKGROUND & AIMS: The liver is the major organ for metabolizing lipids, and malfunction of the liver leads to various diseases. Nonalcoholic fatty liver disease is rapidly becoming a major health concern worldwide and is characterized by abnormal retention of excess lipids in the liver. CCCTC-binding factor (CTCF) is a highly conserved zinc finger protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. Here, we sought to determine the physiological role of CTCF in hepatic lipid metabolism. METHODS: We generated liver-specific, CTCF-ablated and/or CD36 whole-body knockout mice. Overexpression or knockdown of peroxisome proliferator-activated receptor (PPAR)γ in the liver was achieved using adenovirus. Mice were examined for development of hepatic steatosis and inflammation. RNA sequencing was performed to identify genes affected by CTCF depletion. Genome-wide occupancy of H3K27 acetylation, PPARγ, and CTCF were analyzed by chromatin immunoprecipitation sequencing. Genome-wide chromatin interactions were analyzed by in situ Hi-C. RESULTS: Liver-specific, CTCF-deficient mice developed hepatic steatosis and inflammation when fed a standard chow diet. Global analysis of the transcriptome and enhancer landscape revealed that CTCF-depleted liver showed enhanced accumulation of PPARγ in the nucleus, which leads to increased expression of its downstream target genes, including fat storage-related gene CD36, which is involved in the lipid metabolic process. Hepatic steatosis developed in liver-specific, CTCF-deficient mice was ameliorated by repression of PPARγ via pharmacologic blockade or adenovirus-mediated knockdown, but hardly rescued by additional knockout of CD36. CONCLUSIONS: Our data indicate that liver-specific deletion of CTCF leads to hepatosteatosis through augmented PPARγ DNA-binding activity, which up-regulates its downstream target genes associated with the lipid metabolic process.


Assuntos
Fator de Ligação a CCCTC/deficiência , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos/genética , Fenótipo
5.
Autophagy ; 15(6): 1069-1081, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30653406

RESUMO

Protein arginine methyltransferases (PRMTs) have emerged as important regulators of skeletal muscle metabolism and regeneration. However, the direct roles of the various PRMTs during skeletal muscle remodeling remain unclear. Using skeletal muscle-specific prmt1 knockout mice, we examined the function and downstream targets of PRMT1 in muscle homeostasis. We found that muscle-specific PRMT1 deficiency led to muscle atrophy. PRMT1-deficient muscles exhibited enhanced expression of a macroautophagic/autophagic marker LC3-II, FOXO3 and muscle-specific ubiquitin ligases, TRIM63/MURF-1 and FBXO32, likely contributing to muscle atrophy. The mechanistic study reveals that PRMT1 regulates FOXO3 through PRMT6 modulation. In the absence of PRMT1, increased PRMT6 specifically methylates FOXO3 at arginine 188 and 249, leading to its activation. Finally, we demonstrate that PRMT1 deficiency triggers FOXO3 hyperactivation, which is abrogated by PRMT6 depletion. Taken together, PRMT1 is a key regulator for the PRMT6-FOXO3 axis in the control of autophagy and protein degradation underlying muscle maintenance. Abbreviations: Ad-RNAi: adenovirus-delivered small interfering RNA; AKT: thymoma viral proto-oncogene; AMPK: AMP-activated protein kinase; Baf A1: bafilomycin A1; CSA: cross-sectional area; EDL: extensor digitorum longus; FBXO32: F-box protein 32; FOXO: forkhead box O; GAS: gatrocnemieus; HDAC: histone deacetylase; IGF: insulin-like growth factor; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mKO: Mice with skeletal muscle-specific deletion of Prmt1; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; MYL1/MLC1f: myosin, light polypeptide 1; PRMT: protein arginine N-methyltransferase; sgRNA: single guide RNA; SQSTM1: sequestosome 1; SOL: soleus; TA: tibialis anterior; TRIM63/MURF-1: tripartite motif-containing 63; YY1: YY1 transcription factor.


Assuntos
Autofagia/genética , Proteína Forkhead Box O3/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Proteína Forkhead Box O3/química , Proteína Forkhead Box O3/genética , Células HEK293 , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Humanos , Metilação , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Fosforilação , Proto-Oncogene Mas , Transdução de Sinais/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fator de Transcrição YY1/metabolismo
6.
J Clin Invest ; 127(11): 4118-4123, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990936

RESUMO

Olfactory receptors (ORs) are present in tissues outside the olfactory system; however, the function of these receptors remains relatively unknown. Here, we determined that olfactory receptor 544 (Olfr544) is highly expressed in the liver and adipose tissue of mice and regulates cellular energy metabolism and obesity. Azelaic acid (AzA), an Olfr544 ligand, specifically induced PKA-dependent lipolysis in adipocytes and promoted fatty acid oxidation (FAO) and ketogenesis in liver, thus shifting the fuel preference to fats. After 6 weeks of administration, mice fed a high-fat diet (HFD) exhibited a marked reduction in adiposity. AzA treatment induced expression of PPAR-α and genes required for FAO in the liver and induced the expression of PPAR-γ coactivator 1-α (Ppargc1a) and uncoupling protein-1 (Ucp1) genes in brown adipose tissue (BAT). Moreover, treatment with AzA increased insulin sensitivity and ketone body levels. This led to a reduction in the respiratory quotient and an increase in the FAO rate, as indicated by indirect calorimetry. AzA treatment had similar antiobesogenic effects in HFD-fed ob/ob mice. Importantly, AzA-associated metabolic changes were completely abrogated in HFD-fed Olfr544-/- mice. To our knowledge, this is the first report to show that Olfr544 orchestrates the metabolic interplay between the liver and adipose tissue, mobilizing stored fats from adipose tissue and shifting the fuel preference to fats in the liver and BAT.


Assuntos
Adiposidade , Lipólise , Receptores Odorantes/fisiologia , Células 3T3-L1 , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Intolerância à Glucose , Resistência à Insulina , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Termogênese
7.
Sci Signal ; 7(314): ra19, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24570487

RESUMO

Fasting glucose homeostasis is maintained in part through cAMP (adenosine 3',5'-monophosphate)-dependent transcriptional control of hepatic gluconeogenesis by the transcription factor CREB (cAMP response element-binding protein) and its coactivator CRTC2 (CREB-regulated transcriptional coactivator 2). We showed that PRMT6 (protein arginine methyltransferase 6) promotes fasting-induced transcriptional activation of the gluconeogenic program involving CRTC2. Mass spectrometric analysis indicated that PRMT6 associated with CRTC2. In cells, PRMT6 mediated asymmetric dimethylation of multiple arginine residues of CRTC2, which enhanced the association of CRTC2 with CREB on the promoters of gluconeogenic enzyme-encoding genes. In mice, ectopic expression of PRMT6 promoted higher blood glucose concentrations, which were associated with increased expression of genes encoding gluconeogenic factors, whereas knockdown of hepatic PRMT6 decreased fasting glycemia and improved pyruvate tolerance. The abundance of hepatic PRMT6 was increased in mouse models of obesity and insulin resistance, and adenovirus-mediated depletion of PRMT6 restored euglycemia in these mice. We propose that PRMT6 is involved in the regulation of hepatic glucose metabolism in a CRTC2-dependent manner.


Assuntos
Gluconeogênese , Glucose/metabolismo , Resistência à Insulina , Fígado/metabolismo , Obesidade/metabolismo , Fatores de Transcrição/metabolismo , Animais , Arginina/genética , Arginina/metabolismo , Linhagem Celular , AMP Cíclico/genética , AMP Cíclico/metabolismo , Glucose/genética , Humanos , Fígado/patologia , Metilação , Camundongos , Obesidade/genética , Obesidade/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
8.
Hepatology ; 56(4): 1546-56, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22532369

RESUMO

UNLABELLED: Postprandial insulin plays a critical role in suppressing hepatic glucose production to maintain euglycemia in mammals. Insulin-dependent activation of protein kinase B (Akt) regulates this process, in part, by inhibiting FoxO1-dependent hepatic gluconeogenesis by direct phosphorylation and subsequent cytoplasmic exclusion. Previously, it was demonstrated that protein arginine methyltransferase 1 (PRMT1)-dependent arginine modification of FoxO1 interferes with Akt-dependent phosphorylation, both in cancer cells and in the Caenorhabditis elegans model, suggesting that this additional modification of FoxO1 might be critical in its transcriptional activity. In this study, we attempted to directly test the effect of arginine methylation of FoxO1 on hepatic glucose metabolism. The ectopic expression of PRMT1 enhanced messenger RNA levels of FoxO1 target genes in gluconeogenesis, resulting in increased glucose production from primary hepatocytes. Phosphorylation of FoxO1 at serine 253 was reduced with PRMT1 expression, without affecting the serine 473 phosphorylation of Akt. Conversely, knockdown of PRMT1 promoted an inhibition of FoxO1 activity and hepatic gluconeogenesis by enhancing the phosphorylation of FoxO1. In addition, genetic haploinsufficiency of Prmt1 reduced hepatic gluconeogenesis and blood-glucose levels in mouse models, underscoring the importance of this factor in hepatic glucose metabolism in vivo. Finally, we were able to observe an amelioration of the hyperglycemic phenotype of db/db mice with PRMT1 knockdown, showing a potential importance of this protein as a therapeutic target for the treatment of diabetes. CONCLUSION: Our data strongly suggest that the PRMT1-dependent regulation of FoxO1 is critical in hepatic glucose metabolism in vivo.


Assuntos
Fatores de Transcrição Forkhead/genética , Gluconeogênese/fisiologia , Glucose/metabolismo , Hepatócitos/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Western Blotting , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Fosforilação/genética , Sensibilidade e Especificidade , Ativação Transcricional/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA