Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sci Rep ; 14(1): 10882, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740792

RESUMO

The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.


Assuntos
Biofilmes , Gases em Plasma , Saliva , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Gases em Plasma/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Saliva/microbiologia , Fibroblastos/microbiologia , Fibroblastos/efeitos dos fármacos , Periodontite/microbiologia , Periodontite/terapia , Linhagem Celular , Boca/microbiologia
2.
Free Radic Biol Med ; 222: 1-15, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763209

RESUMO

Non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma (LUAD), significantly influences cancer-related mortality and is frequently considered by poor therapeutic responses due to genetic alterations. Cancer cells possess an inclination to develop resistance to individual treatment modalities, thus it is necessary to investigate several pathways simultaneously to obtain insights that will aid in the establishment of improved therapeutic approaches. Exploring regulated cell death (RCD) mechanisms offers promising avenues to augment immunotherapy by reshaping the tumor microenvironment (TME). Here, we investigated the prospective of microwave plasma-infused nitric oxide water (NOW) to initiate immunogenic cell death (ICD) while concurrently modulating autophagy and ferroptosis signaling in LUAD-associated A549 cells. Plasma treatment results in stable NO species nitrite/nitrate (NO2-/NO3-) in the water, altering its physicochemical properties. Analysis of ICD markers reveals increased expression of damage-associated molecular patterns (DAMPs) at both protein and mRNA levels post-NOW exposure. Intracellular reactive oxygen and nitrogen species (RONS) accumulation suggests NO-mediated mitochondrial dysfunction, triggering autophagy induction. Flow cytometry and western blotting confirm alterations in autophagy regulators Beclin 1 and SQSTM1. Furthermore, NOW treatment induces lipid peroxidation and upregulates ferroptosis-associated genes, as determined by qRT-PCR. Transmission electron microscopy (TEM) imaging reveals autophagosome formation and loss of cristae structures, corroborating the occurrence of autophagy and ferroptosis. Our findings propose that NOW may considered as inducer of ICD and the stimulation of other RCD-related proteins may enhance the anti-tumor immunogenicity.

3.
Front Pharmacol ; 15: 1345340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455958

RESUMO

This study assessed the medicinal properties of Euphorbia resinifera O. Berg (E. resinifera) and Euphorbia officinarum subsp echinus (Hook.f. and Coss.) Vindt (Euphorbia echinus, known for their pharmaceutical benefits. Extracts from their flowers, stems, propolis, and honey were examined for phenolic content, antioxidant, anti-inflammatory, and antibacterial activities. Total phenolic content (TPC), total flavonoid content (TFC), and total condensed tannin (TCC) were determined using specific methods. Antioxidant potential was assessed through various tests including DPPH, FRAP, ABTS, and Total antioxidant capacity. Anti-inflammatory effects were evaluated using phenol-induced ear edema in rats, while antibacterial activity was measured against Gram-positive (Staphylococcus aureus ATCC 6538) and Gram-negative (E. coli ATCC 10536) bacteria. Among the extracts, the aqueous propolis extract of E. resinifera demonstrated exceptional antioxidant capabilities, with low IC50 values for DPPH (0.07 ± 0.00 mg/mL) and ABTS (0.13 ± 0.00 mg/mL), as well as high TAC (176.72 ± 0.18 mg AA/mg extract) and FRAP (86.45 ± 1.45 mg AA/mg extract) values. Furthermore, the anti-inflammatory effect of E. resinifera propolis extracts surpassed that of indomethacin, yielding edema percentages of 3.92% and 11.33% for the aqueous and ethanolic extracts, respectively. Microbiological results indicated that the aqueous extract of E. resinifera flower exhibited the most potent inhibitory action against S. aureus, with an inhibition zone diameter (IZD) of 21.0 ± 0.00 mm and a minimum inhibitory concentration (MIC) of 3.125 mg/mL. Additionally, only E. resinifera honey displayed the ability to inhibit E. coli growth, with an inhibition zone diameter of 09.30 ± 0.03 mm and a MIC of 0.0433 mg/mL.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38451384

RESUMO

Tumor suppressor genes and proto-oncogenes comprise most of the complex genomic landscape associated with cancer, with a minimal number of genes exhibiting dual-context-dependent functions. The transcription factor cellular promoter 2 (TFCP2), a pivotal transcription factor encoded by the alpha globin transcription factor CP2 gene, is a constituent of the TFCP2/grainyhead family of transcription factors. While grainyhead members have been extensively studied for their crucial roles in developmental processes, embryogenesis, and multiple cancers, the TFCP2 subfamily has been relatively less explored. The molecular mechanisms underlying TFCP2's involvement in carcinogenesis are still unclear even though it is a desirable target for cancer treatment and a therapeutic marker. This comprehensive literature review summarizes the molecular functions of TFCP2, emphasizing its involvement in cancer pathophysiology, particularly in the epithelial-mesenchymal transition and metastasis. It highlights TFCP2's critical function as a regulatory target and explores its potential as a prognostic marker for survival and inflammation in carcinomas. Its ambiguous association with carcinomas underlines the urgent need for an in-depth understanding to facilitate the development of more efficacious targeted therapeutic modality and diagnostic tools. This study aims to elucidate the multifaceted effects of TFCP2 regulation, through a comprehensive integration of the existing knowledge in cancer therapeutics. Furthermore, the clinical relevance and the inherent challenges encountered in investigating its intricate role in cancer pathogenesis have been discussed in this review.

5.
Environ Pollut ; 347: 123700, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452839

RESUMO

Emerging bio-contaminants (airborne viruses) exploits and manipulate host (human) metabolism to produce new viral particles, evading the host's immune defences and leading to infections. Non-thermal plasma, operating at atmospheric pressure and ambient temperature, is explored for virus inactivation, generating RONS that interact and denatures viral proteins. However, various factors affecting virus survival influence the efficacy of non-thermal plasma. Glucose analogue 2-DG, a metabolic modifier used in this study, disrupts the glycolysis pathway viruses rely on, creating an unfavourable environment for replication. Here, airborne HCoV-229E bio-contaminant was treated with plasma for inactivation, and the presence of RONS was analysed. Metabolically altered lung cells were subsequently exposed to the treated airborne viruses. Cytopathic effect, spike protein, and cell death were evaluated via flow cytometry and confocal microscopy, and CPRRs mediated antiviral gene expression was evaluated using PCR. Gas plasma-treated viruses led to reduced virus proliferation in unaltered lung cells, although few virus particles survived the exposure, as confirmed by biological assessment (cytopathic effects and live/dead staining). A combination approach of gas plasma-treated viruses and altered lung cells displayed drastic virus reduction compared to the control group, established through confocal microscopy and flow cytometry. Furthermore, altered lung cell enhances gene transcription responsible for innate immunity when exposed to the gas plasma-treated virus, thereby impeding airborne virus propagation. This study demonstrates the significance of a surface air gas plasma and metabolic alteration approach in enhancing genes targeted towards antiviral innate immunity and tackling outbreaks of emerging bio-contaminants of concerns (airborne viruses).


Assuntos
Coronavirus Humano 229E , Humanos , Coronavirus Humano 229E/genética , Inativação de Vírus , Pulmão , Imunidade Inata , Antivirais
6.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068979

RESUMO

Diabetes is one of the most significant causes of death all over the world. This illness, due to abnormal blood glucose levels, leads to impaired wound healing and, as a result, foot ulcers. These ulcers cannot heal quickly in diabetic patients and may finally result in amputation. In recent years, different research has been conducted to heal diabetic foot ulcers: one of them is using cold atmospheric pressure plasma. Nowadays, cold atmospheric pressure plasma is highly regarded in medicine because of its positive effects and lack of side effects. These conditions have caused plasma to be considered a promising technology in medicine and especially diabetic wound healing because studies show that it can heal chronic wounds that are resistant to standard treatments. The positive effects of plasma are due to different reactive species, UV radiation, and electromagnetic fields. This work reviews ongoing cold atmospheric pressure plasma improvements in diabetic wound healing. It shows that plasma can be a promising tool in treating chronic wounds, including ones resulting from diabetes.


Assuntos
Diabetes Mellitus , Pé Diabético , Gases em Plasma , Humanos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Relevância Clínica , Cicatrização , Pé Diabético/tratamento farmacológico , Pressão Atmosférica , Diabetes Mellitus/tratamento farmacológico
7.
Chemosphere ; 337: 139363, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422214

RESUMO

In this potential - study, the non - thermal atmospheric pressure plasma is utilized for the neutral - eradication of water contaminants. In the air ambient region, plasma induced reactive species, like as OH•, O (O2-), H2O2 (OH•+OH•) & NOx are performed for the oxidative and reductive transformation of AsIII (H3AsO3) to AsV (H2As O4-) & Fe3O4 (Fe3+) (C-GIO) to Fe2O3 (Fe2+). Whereas, the H2O2 & NOx are quantified maximum (max.) in water, which is 144.24 & 111.82 µM, respectively. In the absence of plasma and plasma with C-GIO, the AsIII was more eradicated, which is 64.01 and 100.00%. While, the C - GIO (catalyst) synergistic enhancement was performed and proved by the neutral - degradation of CR. Also, the AsV adsorbed on C-GIO adsorption capacity qmax and redox-adsorption yield were evaluated, which are 1.36 mg/g and 20.80 g/kWh, respectively. In this research, the waste material (GIO) was recycled, modified, and utilized for the neutral - eradication of water contaminates, which are organic (CR) and inorganic (AsIII) toxicants by the controlling of H and OH• under the interaction of plasma with catalyst (C-GIO). However, in this research, plasma can't adopt the acidic, which is controlled by the C-GIO via RONS. Moreover, in this eradicative study, various water pH alignments were performed, from neutral to acidic & neutral & base for toxicants removal. Furthermore, according to WHO norms, the arsenic level was reduced to 0.01 mg/l for environmental safety. The kinetic and isotherm studies were followed by the mono and multi-layer adsorption was performed on the surface of C - GIO beads, which is estimated by the fitting of rate limiting constant R2 ≈ 1. Furthermore, the C-GIO was examined several characterizations alignments, such as crystal, surface, functional, elemental composition, retention time, mass spectrum, and elemental oriented properties. Overall, the suggested hybrid system is an eco-friendly pathway for the natural - eradication of contaminants, such as organic and inorganic compounds via waste material (GIO) recycling, modification, oxidation, reduction, adsorption, degradation, and neutralization phenomenon.


Assuntos
Quitosana , Gases em Plasma , Poluentes Químicos da Água , Vermelho Congo , Peróxido de Hidrogênio/química , Água , Adsorção , Concentração de Íons de Hidrogênio
8.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298125

RESUMO

This special issue delivers an applied and basic platform for exchanging advanced approaches or research performance that link the plasma physics research in cell biology, cancer treatments, immunomodulation, stem cell differentiation, nanomaterial synthesis, and their applications, agriculture and food processing, microbial inactivation, water decontamination, and sterilization applications, including in vitro and in vivo research [...].


Assuntos
Gases em Plasma , Esterilização , Viabilidade Microbiana , Agricultura , Manipulação de Alimentos , Gases em Plasma/farmacologia
9.
Pharmaceutics ; 15(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242798

RESUMO

Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer treatment have recently garnered significant attention, owing to their effective ablation of cancer cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we designed and developed calcium ion-doped magnesium ferrite nanoparticles (Ca2+-doped MgFe2O4 NPs) as novel and effective PT therapeutic materials for cancer treatment, owing to their good biocompatibility, biosafety, high near-infrared (NIR) absorption, easy localization, short treatment period, remote controllability, high efficiency, and high specificity. The studied Ca2+-doped MgFe2O4 NPs exhibited a uniform spherical morphology with particle sizes of 14.24 ± 1.32 nm and a strong PT conversion efficiency (30.12%), making them promising for cancer photothermal therapy (PTT). In vitro experiments showed that Ca2+-doped MgFe2O4 NPs had no significant cytotoxic effects on non-laser-irradiated MDA-MB-231 cells, confirming that Ca2+-doped MgFe2O4 NPs exhibited high biocompatibility. More interestingly, Ca2+-doped MgFe2O4 NPs exhibited superior cytotoxicity to laser-irradiated MDA-MB-231 cells, inducing significant cell death. Our study proposes novel, safe, high-efficiency, and biocompatible PT therapeutics for treating cancers, opening new vistas for the future development of cancer PTT.

10.
Materials (Basel) ; 16(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176223

RESUMO

The purpose of this paper is to provide an in-depth review of plasmonic metal nanoparticles made from rhodium, platinum, gold, or silver. We describe fundamental concepts, synthesis methods, and optical sensing applications of these nanoparticles. Plasmonic metal nanoparticles have received a lot of interest due to various applications, such as optical sensors, single-molecule detection, single-cell detection, pathogen detection, environmental contaminant monitoring, cancer diagnostics, biomedicine, and food and health safety monitoring. They provide a promising platform for highly sensitive detection of various analytes. Due to strongly localized optical fields in the hot-spot region near metal nanoparticles, they have the potential for plasmon-enhanced optical sensing applications, including metal-enhanced fluorescence (MEF), surface-enhanced Raman scattering (SERS), and biomedical imaging. We explain the plasmonic enhancement through electromagnetic theory and confirm it with finite-difference time-domain numerical simulations. Moreover, we examine how the localized surface plasmon resonance effects of gold and silver nanoparticles have been utilized for the detection and biosensing of various analytes. Specifically, we discuss the syntheses and applications of rhodium and platinum nanoparticles for the UV plasmonics such as UV-MEF and UV-SERS. Finally, we provide an overview of chemical, physical, and green methods for synthesizing these nanoparticles. We hope that this paper will promote further interest in the optical sensing applications of plasmonic metal nanoparticles in the UV and visible ranges.

11.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196783

RESUMO

Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.


Assuntos
RNA não Traduzido , Neoplasias de Mama Triplo Negativas , Humanos , RNA não Traduzido/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Transdução de Sinais
12.
Front Cell Dev Biol ; 11: 1067861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910143

RESUMO

Background: Pulsed high-power microwave (HPM) has many applications and is constantly being researched to expand its uses in the future. As the number of applications grows, the biological effects and safety level of pulsed HPM become a serious issue, requiring further research. Objective: The brain is regarded as the most vulnerable organ to radiation, raising concerns about determining an acceptable level of exposure. The effect of nanosecond pulses and the mechanisms underlying HPM on the brain has not been studied. For the first time, we observed the effect of pulsed 3.5 GHz HPM on brain normal astrocytes and cancer U87 MG cells, as well as the likely mechanisms involved. Methods: To generate 3.5 GHz HPM, an axial virtual cathode oscillator was constructed on pulsed power generator "Chundoong". The cells were directly exposed to HPM (10, 25, 40, and 60) pulses (1 mJ/pulse), with each pulse delivered after 1 min of charging time to evaluate the dose dependent effects. Results: A strong electric field (∼23 kV/cm) of HPM irradiation primarily causes the production of reactive oxygen species (ROS), altering cell viability, mitochondrial activity, and cell death rates in U87 and astrocytes at certain dosages. The ROS generation in response to HPM exposure was primarily responsible for DNA damage and p53 activation. The hazardous dosage of 60 pulses is acknowledged as having damaging effects on brain normal cells. Interestingly, the particular 25 pulses exhibited therapeutic effects on U87 cells via p53, Bax, and Caspase-3 activation. Conclusion: HPM pulses induced apoptosis-related events such as ROS burst and increased oxidative DNA damage at higher dosages in normal cells and specific 25 pulses in cancer U87. These findings are useful to understand the physiological mechanisms driving HPM-induced cell death, as well as the safety threshold range for HPM exposure on normal cells and therapeutic effects on cancer U87. As HPM technology advances, we believe this study is timely and will benefit humanity and future research.

13.
Free Radic Biol Med ; 201: 26-40, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36907254

RESUMO

Cold atmospheric plasma-treated liquids (PTLs) exhibit selective toxicity toward tumor cells and are provoked by a cocktail of reactive oxygen and nitrogen species in such liquids. Compared to the gaseous phase, these reactive species are more persistent in the aqueous phase. This indirect plasma treatment method has gradually gathered interest in the discipline of plasma medicine to treat cancer. PTL's motivated effect on immunosuppressive proteins and immunogenic cell death (ICD) in solid cancer cells is still not explored. In this study, we aimed to induce immunomodulation by plasma-treated Ringer's lactate (PT-RL) and phosphate-buffered saline (PT-PBS) solutions for cancer treatment. PTLs induced minimum cytotoxicity in normal lung cells and inhibited cancer cell growth. ICD is confirmed by the enhanced expression of damage-associated molecular patterns (DAMPs). We evidenced that PTLs induce intracellular nitrogen oxide species accumulation and elevate immunogenicity in cancer cells owing to the production of pro-inflammatory cytokines, DAMPs, and reduced immunosuppressive protein CD47 expression. In addition, PTLs influenced A549 cells to elevate the organelles (mitochondria and lysosomes) in macrophages. Taken together, we have developed a therapeutic approach to potentially facilitate the selection of a suitable candidate for direct clinical applications.


Assuntos
Carcinoma , Neoplasias Pulmonares , Gases em Plasma , Humanos , Argônio/uso terapêutico , Antígeno CD47/uso terapêutico , Morte Celular Imunogênica , Neoplasias Pulmonares/tratamento farmacológico , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Pulmão
14.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982365

RESUMO

Optimizing the therapeutic range of nonthermal atmospheric pressure plasma (NTAPP) for biomedical applications is an active research topic. For the first time, we examined the effect of plasma on-times in this study while keeping the duty ratio and treatment time fixed. We have evaluated the electrical, optical, and soft jet properties for two different duty ratios of 10% and 36%, using the plasma on-times of 25, 50, 75, and 100 ms. Furthermore, the influence of plasma on-time on reactive oxygen and nitrogen species (ROS/RNS) levels in plasma treated medium (PTM) was also investigated. Following treatment, the characteristics of (DMEM media) and PTM (pH, EC, and ORP) were also examined. While EC and ORP rose by raising plasma on-time, pH remained unchanged. Finally, the PTM was used to observe the cell viability and ATP levels in U87-MG brain cancer cells. We found it interesting that, by increasing the plasma on-time, the levels of ROS/RNS dramatically increased in PTM and significantly affected the viability and ATP levels of the U87-MG cell line. The results of this study provide a significant indication of advancement by introducing the optimization of plasma on-time to increase the efficacy of the soft plasma jet for biomedical applications.


Assuntos
Trifosfato de Adenosina , Gases em Plasma , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Sobrevivência Celular , Trifosfato de Adenosina/farmacologia , Gases em Plasma/química , Espécies Reativas de Nitrogênio/metabolismo
15.
J Hazard Mater ; 452: 131197, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989782

RESUMO

The aim of this study was to investigate the effects of hydrophilic sulfur-modified nanoscale zero-valent iron (S-nZVI) as a biocatalyst for denitrification. We found that the denitrifying bacteria Cupriavidus necator (C. necator) promoted Fe corrosion during biocatalytic denitrification, reducing surface passivation and sulfur species leaching from S-nZVI. As a result, S-nZVI exhibited a higher synergistic factor (fsyn = 2.43) for biocatalytic NO3- removal than nanoscale zero-valent iron (nZVI, fsyn = 0.65) at an initial nitrate concentration of 25 mg L-1-N. Based on kinetic profiles, SO42- was the preferred electron acceptor over NO3- when using C. necator and S-nZVI for biocatalytic denitrification. Up-flow column experiments demonstrated that biocatalytic denitrification using S-nZVI achieved a total nitrogen removal capacity of up to 2004 mg L-1 for 127 d. Notably, microbiome taxonomic profiling showed that the addition of S-nZVI to the groundwater promoted the growth of Geobacter, Desulfosporosinus, Streptomyces, and Simplicispira spp in the column experiments. Most of those microbes can reduce sulfate, promote denitrification, and match the batch kinetic profile obtained using C. necator. Our results not only discover the great potential of S-nZVI as a biocatalyst for enhancing denitrification via microbial activation but also provide a deep understanding of the complicated abiotic-biotic interaction.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro , Desnitrificação , Nitratos , Bactérias , Nitrogênio
16.
Front Plant Sci ; 13: 1008881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275519

RESUMO

The genus Euphorbia includes about 2,000 species commonly widespread in both temperate and tropical zones that contain poisonous milky juice fluid or latex. Many species have been used in traditional and complementary medicine for the treatment of various health issues such as dropsy, paralysis, deafness, wounds, warts on the skin, and amaurosis. The medicinal applications of these species have been attributed to the presence of various compounds, and most studies on Euphorbia species have focused on their latex. In this review, we summarize the current state of knowledge on chemical composition and biological activities of the latex from various species of the genus Euphorbia. Our aim was to explore the applications of latex extracts in the medical field and to evaluate their ethnopharmacological potential. The databases employed for data collection, are obtained through Web of Science, PubMed, Google Scholar, Science Direct and Scopus, from 1983 to 2022. The bibliographic data indicate that terpenoids are the most common secondary metabolites in the latex. Furthermore, the latex has interesting biological properties and pharmacological functions, including antibacterial, antioxidant, free radical scavenger, cytotoxic, tumor, anti-inflammatory, healing, hemostatic, anti-angiogenic, insecticidal, genotoxic, and mutagenic activities. However, the role of other components in the latex, such as phenolic compounds, alkaloids, saponins, and flavonoids, remains unknown, which limits the application of the latex. Future studies are required to optimize the therapeutic use of latex extracts.

17.
Int J Mol Sci ; 23(18)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142145

RESUMO

Over the past decade, we witnessed a promising application of cold atmospheric plasma (CAP) in cancer therapy. The aim of this systematic review was to provide an exhaustive state of the art of CAP employed for the treatment of head and neck cancer (HNC), a tumor whose late diagnosis, local recurrence, distant metastases, and treatment failure are the main causes of patients' death. Specifically, the characteristics and settings of the CAP devices and the in vitro and in vivo treatment protocols were summarized to meet the urgent need for standardization. Its molecular mechanisms of action, as well as the successes and pitfalls of current CAP applications in HNC, were discussed. Finally, the interesting emerging preclinical hypotheses that warrant further clinical investigation have risen. A total of 24 studies were included. Most studies used a plasma jet device (54.2%). Argon resulted as the mostly employed working gas (33.32%). Direct and indirect plasma application was reported in 87.5% and 20.8% of studies, respectively. In vitro investigations were 79.17%, most of them concerned with direct treatment (78.94%). Only eight (33.32%) in vivo studies were found; three were conducted in mice, and five on human beings. CAP showed pro-apoptotic effects more efficiently in tumor cells than in normal cells by altering redox balance in a way that oxidative distress leads to cell death. In preclinical studies, it exhibited efficacy and tolerability. Results from this systematic review pointed out the current limitations of translational application of CAP in the urge of standardization of the current protocols while highlighting promising effects as supporting treatment in HNC.


Assuntos
Neoplasias de Cabeça e Pescoço , Gases em Plasma , Animais , Argônio , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Camundongos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico
18.
Toxicol In Vitro ; 85: 105460, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35998759

RESUMO

Nano-based products have become an apparent and effective option to treat liver cancer, which is a deadly disease, and minimize or eradicate these problems. The Core-shell ZnO microspheres composed of nanoclusters (ZnOMS-NCs) have shown that it is very worthwhile to administer the proliferation rate in HepG2 and MCF-7 cancer cells even at a very low concentration (5 µg/mL). ZnOMS-NCs were prepared through hydrothermal solution process and well characterized. The MTT assay revealed that the cytotoxic effects were dose-dependent (2.5 µg/mL-100 µg/mL) on ZnOMS-NCs. The diminished activity in cell viability induces the cytotoxicity response to the ZnOMS-NCs treatment of human cultured cells. The qPCR data showed that the cells (HepG2 and MCF-7) were exposed to ZnOMS-NCs and exhibited up-and downregulated mRNA expression of apoptotic and anti-apoptotic genes, respectively. In conclusion, flow cytometric data exhibited significant apoptosis induction in both cancer cell lines at low concentrations. The possible mechanism also describes the role of ZnOMS-NCs against cancer cells and their responses.


Assuntos
Neoplasias da Mama , Óxido de Zinco , Humanos , Feminino , Óxido de Zinco/toxicidade , Cisteína , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Fígado/metabolismo , RNA Mensageiro/metabolismo , Apoptose , Proliferação de Células
19.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012552

RESUMO

Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.


Assuntos
Encéfalo , Micro-Ondas , Aprendizagem , Micro-Ondas/efeitos adversos , Estudos Prospectivos , Reprodutibilidade dos Testes
20.
Biomedicines ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740265

RESUMO

Plasma-treated media (PTM) serve as an adjuvant therapy to postoperatively remove residual cancerous lesions. We speculated that PTM could selectively kill cells infected with Mycobacterium tuberculosis (Mtb) and remove postoperative residual tuberculous lesions. We therefore investigated the effects of a medium exposed to a non-thermal plasma jet on the suppression of intracellular Mtb replication, cell death, signaling, and selectivity. We propose that PTM elevates the levels of the detoxifying enzymes, glutathione peroxidase, catalase, and ataxia-telangiectasia mutated serine/threonine kinase and increases intracellular reactive oxygen species production in Mtb-infected cells. The bacterial load was significantly decreased in spleen and lung tissues and single-cell suspensions from mice intraperitoneally injected with PTM compared with saline and untreated medium. Therefore, PTM has the potential as a novel treatment that can eliminate residual Mtb-infected cells after infected tissues are surgically resected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA