Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(11): e56166, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870275

RESUMO

ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase. In addition, we observe that poly(ADP-ribose) (PAR) strongly binds to the C-terminus of PARIS near the PrLD, accelerating its LLPS and solidification. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PAR formation leads to PARIS oligomerization in human iPSC-derived dopaminergic neurons that is prevented by the PARP inhibitor, ABT-888. Furthermore, SDS-resistant PARIS species are observed in the substantia nigra (SN) of aged mice overexpressing wild-type PARIS, but not with a PAR binding-deficient PARIS mutant. PARIS solidification is also found in the SN of mice injected with preformed fibrils of α-synuclein (α-syn PFF) and adult mice with a conditional knockout (KO) of parkin, but not if α-syn PFF is injected into mice deficient for PARP1. Herein, we demonstrate that PARIS undergoes LLPS and PAR-mediated solidification in models of Parkinson's disease.


Assuntos
Doença de Parkinson , Poli Adenosina Difosfato Ribose , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Physiol Plant ; 175(2): e13909, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37026423

RESUMO

Pathogenesis-related (PR) signaling plays multiple roles in plant development under abiotic and biotic stress conditions and is regulated by a plethora of plant physiological as well as external factors. Here, our study was conducted to evaluate the role of an ACC deaminase-producing endophytic bacteria in regulating ethylene-induced PR signaling in red pepper plants under salt stress. We also evaluated the efficiency of the bacteria in down-regulating the PR signaling for efficient colonization and persistence in the plant endosphere. We used a characteristic endophyte, Methylobacterium oryzae CBMB20 and its ACC deaminase knockdown mutant (acdS- ). The wild-type M. oryzae CBMB20 was able to decrease ethylene emission by 23% compared to the noninoculated and acdS- M. oryzae CBMB20 inoculated plants under salt stress. The increase in ethylene emission resulted in enhanced hydrogen peroxide concentration, phenylalanine ammonia-lyase activity, ß-1,3 glucanase activity, and expression profiles of WRKY, CaPR1, and CaPTI1 genes that are typical salt stress and PR signaling factors. Furthermore, the inoculation of both the bacterial strains had shown induction of PR signaling under normal conditions during the initial inoculation period. However, wild-type M. oryzae CBMB20 was able to down-regulate the ethylene-induced PR signaling under salt stress and enhance plant growth and stress tolerance. Collectively, ACC deaminase-producing endophytic bacteria down-regulate the salt stress-mediated PR signaling in plants by regulating the stress ethylene emission levels and this suggests a new paradigm in efficient colonization and persistence of ACC deaminase-producing endophytic bacteria for better plant growth and productivity.


Assuntos
Capsicum , Capsicum/metabolismo , Estresse Salino , Etilenos/metabolismo , Bactérias/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982269

RESUMO

DNA polymerase (pol) η is responsible for error-free translesion DNA synthesis (TLS) opposite ultraviolet light (UV)-induced cis-syn cyclobutane thymine dimers (CTDs) and cisplatin-induced intrastrand guanine crosslinks. POLH deficiency causes one form of the skin cancer-prone disease xeroderma pigmentosum variant (XPV) and cisplatin sensitivity, but the functional impacts of its germline variants remain unclear. We evaluated the functional properties of eight human POLH germline in silico-predicted deleterious missense variants, using biochemical and cell-based assays. In enzymatic assays, utilizing recombinant pol η (residues 1-432) proteins, the C34W, I147N, and R167Q variants showed 4- to 14-fold and 3- to 5-fold decreases in specificity constants (kcat/Km) for dATP insertion opposite the 3'-T and 5'-T of a CTD, respectively, compared to the wild-type, while the other variants displayed 2- to 4-fold increases. A CRISPR/Cas9-mediated POLH knockout increased the sensitivity of human embryonic kidney 293 cells to UV and cisplatin, which was fully reversed by ectopic expression of wild-type pol η, but not by that of an inactive (D115A/E116A) or either of two XPV-pathogenic (R93P and G263V) mutants. Ectopic expression of the C34W, I147N, and R167Q variants, unlike the other variants, did not rescue the UV- and cisplatin-sensitivity in POLH-knockout cells. Our results indicate that the C34W, I147N, and R167Q variants-substantially reduced in TLS activity-failed to rescue the UV- and cisplatin-sensitive phenotype of POLH-deficient cells, which also raises the possibility that such hypoactive germline POLH variants may increase the individual susceptibility to UV irradiation and cisplatin chemotherapy.


Assuntos
Cisplatino , Xeroderma Pigmentoso , Humanos , Cisplatino/farmacologia , Raios Ultravioleta , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Reparo do DNA , DNA , Xeroderma Pigmentoso/genética , Dano ao DNA , Células Germinativas/metabolismo
4.
Bioelectrochemistry ; 147: 108192, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35772278

RESUMO

Au nanoclusters (NCs) are considered a promising electrochemiluminescence (ECL) luminophore with biocompatibility and stability that make it suitable for use in bioelectrochemical investigations. The near-infrared (near-IR) ECL of Au NCs is of particular interest for biological applications. In this study, we report the significantly enhanced near-IR ECL of water-soluble Au NCs stabilized with glutathione, which was induced by treating the Au NCs with piperidine. The piperidine treatment of Au NCs enabled a 16-fold enhancement in the near-IR ECL of the NCs in the presence of triethylamine coreactants in water. Compared to the well-known near-IR ECL of Au NCs stabilized with bovine serum albumin (BSA) as a control, the near-IR ECL emission of the piperidine-treated Au NCs (p-Au NCs) was 8 times that of the BSA-stabilized Au NCs. Detailed control experiments suggested that the enhanced near-IR ECL of p-Au NCs could be attributed not to environmental effects (e.g., pH and chemical interference) and the surface ligand effect, but to the reduction of Au(I)-glutathione to Au(0)-glutathione in the NCs. Importantly, the piperidine treatment was also shown to be applicable to different types of Au NCs, such as well-established Au22(SG)18, for improving the ECL emission of the NCs in the near-IR region.


Assuntos
Ouro , Nanopartículas Metálicas , Técnicas Eletroquímicas , Glutationa , Medições Luminescentes , Piperidinas , Soroalbumina Bovina , Água
5.
Sci Rep ; 11(1): 22745, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815492

RESUMO

Although Krüppel-associated box domain-containing zinc-finger proteins (K-ZNFs) may be associated with sophisticated gene regulation in higher organisms, the physiological functions of most K-ZNFs remain unknown. The Zfp212 protein was highly conserved in mammals and abundant in the brain; it was mainly expressed in the cerebellum (Cb). Zfp212 (mouse homolog of human ZNF212) knockout (Zfp212-KO) mice showed a reduction in survival rate compared to wild-type mice after 20 months of age. GABAergic Purkinje cell degeneration in the Cb and aberrant locomotion were observed in adult Zfp212-KO mice. To identify genes related to the ataxia-like phenotype of Zfp212-KO mice, 39 ataxia-associated genes in the Cb were monitored. Substantial alterations in the expression of ataxin 10, protein phosphatase 2 regulatory subunit beta, protein kinase C gamma, and phospholipase D3 (Pld3) were observed. Among them, Pld3 alone was tightly regulated by Flag-tagged ZNF212 overexpression or Zfp212 knockdown in the HT22 cell line. The Cyclic Amplification and Selection of Targets assay identified the TATTTC sequence as a recognition motif of ZNF212, and these motifs occurred in both human and mouse PLD3 gene promoters. Adeno-associated virus-mediated introduction of human ZNF212 into the Cb of 3-week-old Zfp212-KO mice prevented Purkinje cell death and motor behavioral deficits. We confirmed the reduction of Zfp212 and Pld3 in the Cb of an alcohol-induced cerebellar degeneration mouse model, suggesting that the ZNF212-PLD3 relationship is important for Purkinje cell survival.


Assuntos
Ataxia/patologia , Proteínas de Ligação a DNA/metabolismo , Transtornos Neurológicos da Marcha/patologia , Proteínas do Tecido Nervoso/fisiologia , Fosfolipase D/antagonistas & inibidores , Células de Purkinje/patologia , Animais , Ataxia/etiologia , Proteínas de Ligação a DNA/administração & dosagem , Proteínas de Ligação a DNA/genética , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo
6.
Brain ; 144(12): 3674-3691, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34581802

RESUMO

Aberrant activation of the non-receptor kinase c-Abl is implicated in the development of pathogenic hallmarks of Parkinson's disease, such as α-synuclein aggregation and progressive neuronal loss. c-Abl-mediated phosphorylation and inhibition of parkin ligase function lead to accumulation of parkin interacting substrate (PARIS) that mediates α-synuclein pathology-initiated dopaminergic neurodegeneration. Here we show that, in addition to PARIS accumulation, c-Abl phosphorylation of PARIS is required for PARIS-induced cytotoxicity. c-Abl-mediated phosphorylation of PARIS at Y137 (within the Krüppel-associated box domain) drives its association with KAP1 and the repression of genes with diverse functions in pathways such as chromatin remodelling and p53-dependent cell death. One phosphorylation-dependent PARIS target, MDM4 (a p53 inhibitor that associates with MDM2; also known as MDMX), is transcriptionally repressed in a histone deacetylase-dependent manner via PARIS binding to insulin response sequence motifs within the MDM4 promoter. Virally induced PARIS transgenic mice develop c-Abl activity-dependent Parkinson's disease features such as motor deficits, dopaminergic neuron loss and neuroinflammation. PARIS expression in the midbrain resulted in c-Abl activation, PARIS phosphorylation, MDM4 repression and p53 activation, all of which are blocked by the c-Abl inhibitor nilotinib. Importantly, we also observed aberrant c-Abl activation and PARIS phosphorylation along with PARIS accumulation in the midbrain of adult parkin knockout mice, implicating c-Abl in recessive Parkinson's disease. Inhibition of c-Abl or PARIS phosphorylation by nilotinib or Y137F-PARIS expression in adult parkin knockout mice blocked MDM4 repression and p53 activation, preventing motor deficits and dopaminergic neurodegeneration. Finally, we found correlative increases in PARIS phosphorylation, MDM4 repression and p53 activation in post-mortem Parkinson's disease brains, pointing to clinical relevance of the c-Abl-PARIS-MDM4-p53 pathway. Taken together, our results describe a novel mechanism of epigenetic regulation of dopaminergic degeneration downstream of pathological c-Abl activation in Parkinson's disease. Since c-Abl activation has been shown in sporadic Parkinson's disease, PARIS phosphorylation might serve as both a useful biomarker and a potential therapeutic target to regulate neuronal loss in Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/patologia , Degeneração Neural/patologia , Transtornos Parkinsonianos/patologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Repressoras/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Degeneração Neural/metabolismo , Transtornos Parkinsonianos/metabolismo , Fosforilação
7.
Int J Oncol ; 58(1): 111-121, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367928

RESUMO

Serpin family E member 1 (SERPINE1), a serine proteinase inhibitor, serves as an important regulator of extracellular matrix remodeling. Emerging evidence suggests that SERPINE1 has diverse roles in cancer and is associated with poor prognosis. However, the mechanism via which SERPINE1 is induced in cancer has not been fully determined. In order to examine the molecular mechanism of SERPINE1 expression, the present study took advantage of the isogenic pair of lung cancer cells with epithelial or mesenchymal features. Using genetic perturbation and following biochemical analysis, the present study demonstrated that SERPINE1 expression was upregulated in mesenchymal lung cancer cells and promoted cellular invasiveness. Yes­associated protein (YAP)­dependent SERPINE1 expression was modulated by treatment with a Rho­associated protein kinase inhibitor, Y27632. Moreover, TGFß treatment supported YAP­dependent SERPINE1 expression, and an enhanced TGFß response in mesenchymal lung cancer cells promoted SERPINE1 expression. TGFß­mediated SERPINE1 expression was significantly attenuated by knockdown of YAP or transcriptional co­activator with PDZ­binding motif, suggesting that crosstalk between the TGFß and YAP pathways underlies SERPINE1 expression in mesenchymal cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Pulmonares/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/patologia , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fator de Crescimento Transformador beta/genética , Regulação para Cima , Proteínas de Sinalização YAP
8.
Mol Oncol ; 15(2): 679-696, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33207077

RESUMO

The acquisition of chemoresistance remains a major cause of cancer mortality due to the limited accessibility of targeted or immune therapies. However, given that severe alterations of molecular features during epithelial-to-mesenchymal transition (EMT) lead to acquired chemoresistance, emerging studies have focused on identifying targetable drivers associated with acquired chemoresistance. Particularly, AXL, a key receptor tyrosine kinase that confers resistance against targets and chemotherapeutics, is highly expressed in mesenchymal cancer cells. However, the underlying mechanism of AXL induction in mesenchymal cancer cells is poorly understood. Our study revealed that the YAP signature, which was highly enriched in mesenchymal-type lung cancer, was closely correlated to AXL expression in 181 lung cancer cell lines. Moreover, using isogenic lung cancer cell pairs, we also found that doxorubicin treatment induced YAP nuclear translocation in mesenchymal-type lung cancer cells to induce AXL expression. Additionally, the concurrent activation of TGFß signaling coordinated YAP-dependent AXL expression through SMAD4. These data suggest that crosstalk between YAP and the TGFß/SMAD axis upon treatment with chemotherapeutics might be a promising target to improve chemosensitivity in mesenchymal-type lung cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Proteínas de Sinalização YAP , Receptor Tirosina Quinase Axl
9.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689937

RESUMO

The motor and nonmotor symptoms of Parkinson's disease (PD) correlate with the formation and propagation of aberrant α-synuclein aggregation. This protein accumulation is a pathological hallmark of the disease. Our group recently showed that peucedanocoumarin III (PCIII) possesses the ability to disaggregate ß sheet aggregate structures, including α-synuclein fibrils. This finding suggests that PCIII could be a therapeutic lead compound in PD treatment. However, the translational value of PCIII and its safety information have never been explored in relevant animal models of PD. Therefore, we first designed and validated a sequence of chemical reactions for the large scale organic synthesis of pure PCIII in a racemic mixture. The synthetic PCIII racemate facilitated clearance of repeated ß sheet aggregate (ß23), and prevented ß23-induced cell toxicity to a similar extent to that of purified PCIII. Given these properties, the synthetic PCIII's neuroprotective function was assessed in 6-hydroxydopamine (6-OHDA)-induced PD mouse models. The PCIII treatment (1 mg/kg/day) in a 6-OHDA-induced PD mouse model markedly suppressed Lewy-like inclusions and prevented dopaminergic neuron loss. To evaluate the safety profiles of PCIII, high dose PCIII (10 mg/kg/day) was administered intraperitoneally to two-month-old mice. Following 7 days of PCIII treatment, PCIII distributed to various tissues, with substantial penetration into brains. The mice that were treated with high dose PCIII had no structural abnormalities in the major organs or neuroinflammation. In addition, high dose PCIII (10 mg/kg/day) in mice had no adverse impact on motor function. These findings suggest that PCIII has a relatively high therapeutic index. Given the favorable safety features of PCIII and neuroprotective function in the PD mouse model, it may become a promising disease-modifying therapy in PD to regulate pathogenic α-synuclein aggregation.


Assuntos
Cumarínicos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cumarínicos/efeitos adversos , Cumarínicos/síntese química , Cumarínicos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacocinética , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Distribuição Tecidual
10.
Sci Rep ; 8(1): 2557, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416050

RESUMO

Neurite growth is controlled by a complex molecular signaling network that regulates filamentous actin (F-actin) dynamics at the growth cone. The evolutionarily conserved ezrin, radixin, and moesin family of proteins tether F-actin to the cell membrane when phosphorylated at a conserved threonine residue and modulate neurite outgrowth. Here we show that Akt binds to and phosphorylates a threonine 573 residue on radixin. Akt-mediated phosphorylation protects radixin from ubiquitin-dependent proteasomal degradation, thereby enhancing radixin protein stability, which permits proper neurite outgrowth and growth cone formation. Conversely, the inhibition of Akt kinase or disruption of Akt-dependent phosphorylation reduces the binding affinity of radixin to F-actin as well as lowers radixin protein levels, resulting in decreased neurite outgrowth and growth cone formation. Our findings suggest that Akt signaling regulates neurite outgrowth by stabilizing radixin interactions with F-actin, thus facilitating local F-actin dynamics.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Crescimento Neuronal/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Actinas/metabolismo , Animais , Cones de Crescimento/fisiologia , Células HEK293 , Humanos , Camundongos , Neurogênese , Crescimento Neuronal/genética , Células PC12 , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Transdução de Sinais
11.
Oncotarget ; 8(30): 48603-48618, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28611284

RESUMO

Progressive dopaminergic neurodegeneration is responsible for the canonical motor deficits in Parkinson's disease (PD). The widely prescribed anti-diabetic medicine metformin is effective in preventing neurodegeneration in animal models; however, despite the significant potential of metformin for treating PD, the therapeutic effects and molecular mechanisms underlying dopaminergic neuroprotection by metformin are largely unknown.In this study, we found that metformin induced substantial proteomic changes, especially in metabolic and mitochondrial pathways in the substantia nigra (SN). Consistent with this data, metformin increased mitochondrial marker proteins in SH-SY5Y neuroblastoma cells. Mitochondrial protein expression by metformin was found to be brain region specific, with metformin increasing mitochondrial proteins in the SN and the striatum, but not the cortex. As a potential upstream regulator of mitochondria gene transcription by metformin, PGC-1α promoter activity was stimulated by metformin via CREB and ATF2 pathways. PGC-1α and phosphorylation of ATF2 and CREB by metformin were selectively increased in the SN and the striatum, but not the cortex. Finally, we showed that metformin protected dopaminergic neurons and improved dopamine-sensitive motor performance in an MPTP-induced PD animal model. Together these results suggest that the metformin-ATF2/CREB-PGC-1α pathway might be promising therapeutic target for PD.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Metformina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Proteômica/métodos , Substância Negra/metabolismo
12.
Chem Res Toxicol ; 29(10): 1741-1754, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27603496

RESUMO

DNA polymerase (pol) κ efficiently catalyzes error-free translesion DNA synthesis (TLS) opposite bulky N2-guanyl lesions induced by carcinogens such as polycyclic aromatic hydrocarbons. We investigated the biochemical effects of nine human nonsynonymous germline POLK variations on the TLS properties of pol κ, utilizing recombinant pol κ (residues 1-526) enzymes and DNA templates containing an N2-CH2(9-anthracenyl)G (N2-AnthG), 8-oxo-7,8-dihydroguanine (8-oxoG), O6-methyl(Me)G, or an abasic site. In steady-state kinetic analyses, the R246X, R298H, T473A, and R512W variants displayed 7- to 18-fold decreases in kcat/Km for dCTP insertion opposite G and N2-AnthG, with 2- to 3-fold decreases in DNA binding affinity, compared to that of the wild-type, and further showed 5- to 190-fold decreases in kcat/Km for next-base extension from C paired with N2-AnthG. The A471V variant showed 2- to 4-fold decreases in kcat/Km for correct nucleotide insertion opposite and beyond G (or N2-AnthG) compared to that of the wild-type. These five hypoactive variants also showed similar patterns of attenuation of TLS activity opposite 8-oxoG, O6-MeG, and abasic lesions. By contrast, the T44M variant exhibited 7- to 11-fold decreases in kcat/Km for dCTP insertion opposite N2-AnthG and O6-MeG (as well as for dATP insertion opposite an abasic site) but not opposite both G and 8-oxoG, nor beyond N2-AnthG, compared to that of the wild-type. These results suggest that the R246X, R298H, T473A, R512W, and A471V variants cause a general catalytic impairment of pol κ opposite G and all four lesions, whereas the T44M variant induces opposite lesion-dependent catalytic impairment, i.e., only opposite O6-MeG, abasic, and bulky N2-G lesions but not opposite G and 8-oxoG, in pol κ, which might indicate that these hypoactive pol κ variants are genetic factors in modifying individual susceptibility to genotoxic carcinogens in certain subsets of populations.


Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Variação Genética/genética , Humanos , Modelos Moleculares , Conformação Molecular
13.
Chem Res Toxicol ; 29(3): 367-79, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26914252

RESUMO

The Y-family DNA polymerase REV1 is involved in replicative bypass of damaged DNA and G-quadruplex (G4) DNA. In addition to a scaffolding role in the replicative bypass, REV1 acts in a catalytic role as a deoxycytidyl transferase opposite some replication stall sites, e.g., apurinic/apyrimidinic (AP) sites, N(2)-guanyl lesions, and G4 sites. We characterized the biochemical properties of 12 reported germline missense variants of human REV1, including the N373S variant associated with high risk of cervical cancer, using the recombinant REV1 (residues 330-833) proteins and DNA templates containing a G, AP site, N(2)-CH2(2-naphthyl)G (N(2)-NaphG), or G4. In steady-state kinetic analyses, the F427L, R434Q, M656V, D700N, R704Q, and P831L variants displayed 2- to 8-fold decreases in kcat/Km for dCTP insertion opposite all four templates, compared to that of wild-type, while the N373S, M407L, and N497S showed 2- to 3-fold increases with all four and the former three or two templates, respectively. The F427L, R434Q, M656V, and R704Q variants also had 2- to 3-fold lower binding affinities to DNA substrates containing G, an AP site, and/or N(2)-NaphG than wild-type. Distinctively, the N373S variant had a 3-fold higher binding affinity to G4 DNA than the wild-type, as well as a 2-fold higher catalytic activity opposite the first tetrad G, suggesting a facilitating effect of this variation on replication of G4 DNA sequences in certain human papillomavirus genomes. Our results suggest that the catalytic function of REV1 is moderately or slightly altered by at least nine genetic variations, and the G4 DNA processing function of REV1 is slightly enhanced by the N373S variation, which might provide the possibility that certain germline missense REV1 variations affect the individual susceptibility to carcinogenesis by modifying the capability of REV1 for replicative bypass past DNA lesions and G4 motifs derived from chemical and viral carcinogens.


Assuntos
Dano ao DNA , DNA/química , DNA/metabolismo , Quadruplex G , Mutação em Linhagem Germinativa/genética , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Adutos de DNA/química , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Nucleotidiltransferases/química
14.
Chem Res Toxicol ; 27(10): 1837-52, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25162224

RESUMO

DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences in TLS, mutation, and cancer susceptibility to genotoxic carcinogens.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Substituição de Aminoácidos , Sequência de Bases , DNA/química , Primers do DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Polarização de Fluorescência , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Cinética , Magnésio/química , Manganês/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , DNA Polimerase iota
15.
Chem Res Toxicol ; 27(5): 919-30, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24725253

RESUMO

DNA polymerase (pol) κ, one of the Y-family polymerases, has been shown to function in error-free translesion DNA synthesis (TLS) opposite the bulky N(2)-guanyl DNA lesions induced by many carcinogens such as polycyclic aromatic hydrocarbons. We analyzed the biochemical properties of eight reported human pol κ variants positioned in the polymerase core domain, using the recombinant pol κ (residues 1-526) protein and the DNA template containing an N(2)-CH2(9-anthracenyl)G (N(2)-AnthG). The truncation R219X was devoid of polymerase activity, and the E419G and Y432S variants showed much lower polymerase activity than wild-type pol κ. In steady-state kinetic analyses, E419G and Y432S displayed 20- to 34-fold decreases in kcat/Km for dCTP insertion opposite G and N(2)-AnthG compared to that of wild-type pol κ. The L21F, I39T, and D189G variants, as well as E419G and Y432S, displayed 6- to 22-fold decreases in kcat/Km for next-base extension from C paired with N(2)-AnthG, compared to that of wild-type pol κ. The defective Y432S variant had 4- to 5-fold lower DNA-binding affinity than wild-type, while a slightly more efficient S423R variant possessed 2- to 3-fold higher DNA-binding affinity. These results suggest that R219X abolishes and the E419G, Y432S, L21F, I39T, and D189G variations substantially impair the TLS ability of pol κ opposite bulky N(2)-G lesions in the insertion step opposite the lesion and/or the subsequent extension step, raising the possibility that certain nonsynonymous pol κ genetic variations translate into individual differences in susceptibility to genotoxic carcinogens.


Assuntos
Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Adutos de DNA/química , DNA Polimerase Dirigida por DNA/química , Variação Genética , Humanos , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Chem Res Toxicol ; 26(2): 221-32, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23305233

RESUMO

Specialized DNA polymerases participate in replication stress responses and in DNA repair pathways that function as barriers against cellular senescence and genomic instability. These events can be co-opted by tumor cells as a mechanism to survive chemotherapeutic and ionizing radiation treatments and as such, represent potential targets for adjuvant therapies. Previously, a high-throughput screen of ∼16,000 compounds identified several first generation proof-of-principle inhibitors of human DNA polymerase kappa (hpol κ). The indole-derived inhibitor of 5-lipoxygenase activating protein (FLAP), MK886, was one of the most potent inhibitors of hpol κ discovered in that screen. However, the specificity and mechanism of inhibition remained largely undefined. In the current study, the specificity of MK886 against human Y-family DNA polymerases and a model B-family DNA polymerase was investigated. MK886 was found to inhibit the activity of all DNA polymerases tested with similar IC(50) values, the exception being a 6- to 8-fold increase in the potency of inhibition against human DNA polymerase iota (hpol ι), a highly error-prone enzyme that uses Hoogsteen base-pairing modes during catalysis. The specificity against hpol ι was partially abrogated by inclusion of the recently annotated 25 a.a. N-terminal extension. On the basis of Michaelis-Menten kinetic analyses and DNA binding assays, the mechanism of inhibition by MK886 appears to be mixed. In silico docking studies were used to produce a series of models for MK886 binding to Y-family members. The docking results indicate that two binding pockets are conserved between Y-family polymerases, while a third pocket near the thumb domain appears to be unique to hpol ι. Overall, these results provide insight into the general mechanism of DNA polymerase inhibition by MK886.


Assuntos
Indóis/farmacologia , Leucotrienos/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores da Síntese de Ácido Nucleico , Sítios de Ligação , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , DNA Polimerase iota
17.
J Biol Chem ; 287(42): 35516-35526, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22910910

RESUMO

N(2),3-Ethenoguanine (N(2),3-εG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2'-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2'-fluoro-N(2),3-ε-2'-deoxyarabinoguanosine to investigate the miscoding potential of N(2),3-εG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N(2),3-εG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N(2),3-εG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N(2),3-εG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N(2),3-εG:dCTP base pair, whereas only one appears to be present in the case of the N(2),3-εG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N(2),3-εG.


Assuntos
Adutos de DNA/química , DNA Polimerase beta/química , DNA Polimerase Dirigida por DNA/química , Guanina/análogos & derivados , Proteínas Nucleares/química , Nucleotidiltransferases/química , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/química , Guanina/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
18.
Toxicol Lett ; 207(2): 143-8, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21925250

RESUMO

Recently, we reported that silver nanoparticles (AgNPs) induced reactive oxygen species (ROS) generation and the resultant oxidative stress contributes to the cell damage associated with AgNPs. 8-Oxoguanine (8-oxoG) is sensitive marker of ROS-induced DNA damage. 8-Oxoguanine DNA glycosylase 1 (OGG1) is an important DNA repair enzyme that recognizes and excises 8-oxoG. The aim of the present study was to examine the effect of AgNPs-induced oxidative stress on OGG1 and to elucidate mechanisms underlying AgNPs toxicity. AgNPs decreased OGG1 mRNA and protein expression, resulting in decreased OGG1 activity. Decreased OGG1 activity in AgNPs-treated cells led to increased 8-oxoG levels. The transcription factor NF-E2-related factor 2 (Nrf2) is an important factor in the inducible regulation of OGG1. AgNPs treatment decreased nuclear Nrf2 expression, translocation into nucleus, and transcriptional activity of Nrf2. Extracellular regulated kinase (ERK) and protein kinase B (PKB, AKT), which are upstream of Nrf2, contribute to OGG1 expression. AgNPs attenuated both active forms of ERK and AKT protein expression, resulting in suppression of Nrf2 and decrease of OGG1 expression. These studies demonstrate that down-regulation of Nrf2-mediated OGG1 in exposure to AgNPs occurs through ERK and AKT inactivation.


Assuntos
DNA Glicosilases/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Compostos de Prata/farmacologia , Western Blotting , Linhagem Celular , Humanos , Fígado/enzimologia , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
J Biol Chem ; 285(52): 40666-72, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20961860

RESUMO

O(6)-methylguanine (O(6)-methylG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, even physiological ones (e.g. S-adenosylmethionine). The efficiency of a truncated, catalytic DNA polymerase ι core enzyme was determined for nucleoside triphosphate incorporation opposite O(6)-methylG, using steady-state kinetic analyses. The results presented here corroborate previous work from this laboratory using full-length pol ι, which showed that dTTP incorporation occurs with high efficiency opposite O(6)-methylG. Misincorporation of dTTP opposite O(6)-methylG occurred with ∼6-fold higher efficiency than incorporation of dCTP. Crystal structures of the truncated form of pol ι with O(6)-methylG as the template base and incoming dCTP or dTTP were solved and showed that O(6)-methylG is rotated into the syn conformation in the pol ι active site and that dTTP misincorporation by pol ι is the result of Hoogsteen base pairing with the adduct. Both dCTP and dTTP base paired with the Hoogsteen edge of O(6)-methylG. A single, short hydrogen bond formed between the N3 atom of dTTP and the N7 atom of O(6)-methylG. Protonation of the N3 atom of dCTP and bifurcation of the N3 hydrogen between the N7 and O(6) atoms of O(6)-methylG allow base pairing of the lesion with dCTP. We conclude that differences in the Hoogsteen hydrogen bonding between nucleotides is the main factor in the preferential selectivity of dTTP opposite O(6)-methylG by human pol ι, in contrast to the mispairing modes observed previously for O(6)-methylG in the structures of the model DNA polymerases Sulfolobus solfataricus Dpo4 and Bacillus stearothermophilus DNA polymerase I.


Assuntos
Domínio Catalítico , DNA , Guanina/análogos & derivados , Nucleotídeos de Timina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pareamento de Bases , DNA/biossíntese , DNA/química , DNA Polimerase I/química , DNA Polimerase I/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxicitosina , Geobacillus stearothermophilus/enzimologia , Guanina/química , Guanina/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Relação Estrutura-Atividade , Sulfolobus/química , Sulfolobus/metabolismo , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo , DNA Polimerase iota
20.
J Toxicol Environ Health A ; 73(21-22): 1477-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20954074

RESUMO

The toxicity of formaldehyde (HCHO) has been attributed to its ability to form adducts with DNA and proteins. Triphlorethol-A, derived from Ecklonia cava, was reported to exert a cytoprotective effect against oxidative stress damage via an antioxidant mechanism. The aim of this study was to examine the mechanisms underlying the triphlorethol-A ability to protect Chinese hamster lung fibroblast (V79-4) cells against HCHO-induced damage. Triphlorethol-A significantly decreased the HCHO-induced intracellular reactive oxygen species (ROS) production. Triphlorethol-A prevented increased cell damage induced by HCHO via inhibition of mitochondria-mediated caspase-dependent apoptosis pathway. Triphlorethol-A diminished HCHO-induced mitochondrial dysfunction, including loss of mitochondrial membrane action potential (Δψ) and adenosine triphosphate (ATP) depletion. Furthermore, the anti-apoptotic effect of triphlorethol-A was exerted through inhibition of c-Jun NH(2)-terminal kinase (JNK), which was enhanced by HCHO. Our data indicate that triphlorethol-A exerts a cytoprotective effect in V79-4 cells against HCHO-induced oxidative stress by inhibiting the mitochondria-mediated caspase-dependent apoptotic pathway.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Formaldeído/toxicidade , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Phaeophyceae/química , Floroglucinol/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Caspase 9/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Citoproteção/efeitos dos fármacos , Fragmentação do DNA , Antagonismo de Drogas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Floroglucinol/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA